催化学报 ›› 2026, Vol. 81: 284-298.DOI: 10.1016/S1872-2067(25)64845-5

• 论文 • 上一篇    下一篇

分子间作用力增强聚巴比妥酸全有机异质结界面载流子迁移以实现高效光催化制氢

张哲a,1, 潘桂旭a,1, 朱炜a,1, 张珂瑜a, 梁桂杰b(), 王诗涵a, 王宁a(), 邢艳c, 李云锋a()   

  1. a 西安工程大学环境与化学工程学院, 功能性纺织材料及制品教育部重点实验室, 陕西西安 710048
    b 湖北文理学院, 低维光电材料与器件湖北省重点实验室, 湖北襄阳 441053
    c 东北师范大学化学学院, 吉林省先进能源材料重点实验室, 吉林长春 130024
  • 收稿日期:2025-06-23 接受日期:2025-08-06 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: liyf377@nenu.edu.cn (李云锋),ninaw2018@163.com (王宁),guijie-liang@hbuas.edu.cn (梁桂杰).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22578345);国家自然科学基金(21872023);国家自然科学基金(22372028);国家自然科学基金(22279031);陕西省重点研发计划(2022GY-166);陕西省重点研发计划(2024SF-YBXM-593);陕西省教育厅青年创新团队研究计划项目(24JP072);陕西省教育厅资助的科学研究项目(23JC033);西安科技规划项目(24GXFW0021)

Multi-intermolecular forces strengthen interfacial carrier mobility in poly (barbituric acid) all-organic heterojunction systems for efficient solar-to-hydrogen conversion

Zhe Zhanga,1, Guixu Pana,1, Wei Zhua,1, Keyu Zhanga, Guijie Liangb(), Shihan Wanga, Ning Wanga(), Yan Xingc, Yunfeng Lia()   

  1. a College of Environmental and Chemical Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
    b Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
    c Jilin Provincial Key Laboratory of Advanced Energy Materials, Department of Chemistry, Northeast Normal University, Changchun 130024, Jilin, China
  • Received:2025-06-23 Accepted:2025-08-06 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: liyf377@nenu.edu.cn (Y. Li),ninaw2018@163.com (N. Wang),guijie-liang@hbuas.edu.cn (G. Liang).
  • About author:1 Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22578345);National Natural Science Foundation of China(21872023);National Natural Science Foundation of China(22372028);National Natural Science Foundation of China(22279031);Shaanxi Provincial Key Research and Development Program(2022GY-166);Shaanxi Provincial Key Research and Development Program(2024SF-YBXM-593);Shaanxi Provincial Department of Education Youth Innovation Team Research Plan Project(24JP072);Scientific Research Program Funded by Shaanxi Provincial Education Department(23JC033);Xi'an Science and Technology Planning Project(24GXFW0021)

摘要:

社会的进步往往依赖于工业的快速发展, 但不可避免地伴随着大量的能源消耗. 氢能作为一种清洁、高效、可再生的能源, 不仅可以实现零碳排放, 还可以转化为各种形式的能源. 太阳能驱动的光催化水分解已被公认为一种先进、绿色、可持续的制氢技术, 而开发高效、稳定且价格低廉的光催化剂是该技术得以实施的关键. 石墨相氮化碳(g-C3N4)因其易于合成、电子能带结构可调及高稳定性等优势, 已被广泛研究. 然而, g-C3N4中光生电荷的快速复合与价带空穴的氧化能力不足限制了其在能量转换和环境净化方面的应用. 目前, 各种修饰策略已被尝试以克服g-C3N4的上述缺点, 如原子掺杂、形态控制、官能团修饰等.

高性能全有机异质结光催化体系的开发及其载流子激发与界面迁移动力学的阐明已引发研究者的广泛关注. 全有机异质结可通过富含官能团的分子间相互作用产生稳定高效的界面效应, 从而促进异质结界面间光生载流子的迁移. 因此, 本研究通过多重分子间相互作用制备了聚巴比妥酸/石墨相氮化碳(PBA/UCN)全有机异质结, 分子间作用力显著增强了异质结体系的界面效应, 促进载流子的快速传输, 其界面载流子转移速率高达5.05 ps. 通过原位开尔文探针力显微镜和原位辐照X射线光电子能谱对载流子的传输路径与行为进行了进一步验证. 此外, 通过拟合飞秒瞬态吸收光谱中600 nm处激发态吸收信号与495 nm处基态漂白信号的衰减曲线, 系统研究了载流子的动力学行为与寿命特征, 揭示了载流子的扩散、弛豫及转移机制. 所构建的PBA/UCN全有机分子异质结具备优化的氧化还原能力, 展现出高效的光催化分解水产氢效率, 产氢速率为12.55 mmol h‒1 g‒1, 在420 ± 15 nm波段入射光照射下其表观量子效率为17.12%. 尤为重要的是, 本文证实PBA作为具有前景的氧化型有机半导体, 可与多种还原型有机光催化材料, 如聚三嗪酰亚胺、聚庚嗪酰亚胺、苝-3,4,9,10-四甲酸、共价三嗪框架等耦合, 构建一系列高效的全有机异质结光催化剂.

综上, 该工作为通过多重分子间作用力设计和构建高效的全有机异质结提供了新的思路, 同时为异质结中跨界面载流子迁移行为尤其是分子间作用力在优化光催化效率中的关键作用提供了理论支撑.

关键词: 光催化, 异质结, 聚巴比妥酸, 分子间力, 制氢

Abstract:

The development of high-performance all-organic heterojunction photocatalytic systems and the elucidation of their charge carrier excitation and interface migration dynamics have attracted significant research interest. Herein, poly (barbituric acid)/g-C3N4 (PBA/UCN) all-organic heterojunctions were prepared by exploiting multiple intermolecular interactions to induce fast interface charge-carrier transfer with a lifetime of approximately 5.05 ps, as was directly verified by in-situ Kelvin probe force microscopy and in-situ irradiation X-ray photoelectron spectroscopy. Moreover, the dynamics and lifetimes of charge carriers were studied by fitting the decay curves of excited-state absorption signals at 600 nm and ground-state bleaching signals at 495 nm obtained by femtosecond transient absorption spectroscopy to further reveal the diffusion, relaxation, and transfer processes of PBA/UCN. The as-prepared PBA/UCN all-organic molecular heterojunction with optimal redox ability exhibits an excellent H2 evolution rate of 12.55 mmol h-1 g-1 and an apparent quantum efficiency of 17.12% at 420 ± 15 nm. In particular, we demonstrate that PBA, which is a promising oxidizing organic semiconductor, can be coupled with various reducing organic photocatalytic materials such as poly(triazine imide), poly(heptazine imide), perylene-3,4,9,10- tetracarboxylic acid, and covalent triazine-based frameworks to obtain a series of efficient all-organic heterojunction photocatalysts.

Key words: Photocatalysis, Heterojunction, Poly (barbituric acid), Intermolecular force, H2 production