催化学报

• 研究论文 • 上一篇    下一篇

铁基费托合成催化剂相变调控及反应性能

高芳芳a,b, 王洪c, 青明c, 杨勇a,c, 李永旺a,c   

  1. a 中国科学院山西煤炭化学研究所煤转化国家重点实验室,山西太原 030001;
    b 中国科学院大学,北京 100049;
    c 中科合成油技术有限公司,北京 101407
  • 收稿日期:2013-01-25 修回日期:2013-02-27 出版日期:2013-07-16 发布日期:2013-07-16
  • 通讯作者: 杨勇
  • 基金资助:

    国家自然科学基金(20703054); 国家重点基础研究发展计划(973计划, 2011CB201401);国家高技术研究发展计划(863计划,2011AA05A205).

Controlling the phase transformations and performance of iron-based catalysts in the Fischer-Tropsch synthesis

GAO Fangfanga,b, WANG Hongc, QING Mingc, YANG Yonga,c, LI Yongwanga,c   

  1. a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China;
    b University of Chinese Academy of Sciences, Beijing 100049, China;
    c Synfuels China Co. Ltd, Beijing 101407, China
  • Received:2013-01-25 Revised:2013-02-27 Online:2013-07-16 Published:2013-07-16
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (20703054), the National Basic Research Program of China (973 Program, 2011CB201401), and the National High Technology Research and Development Program of China (863 Program, 2011AA05A205).

摘要: 在Fe基模型催化剂上,通过先深度还原后控制碳化的方法实现了物相结构的调控.采用X射线衍射、穆斯堡尔谱、程序升温脱附技术和激光拉曼光谱等方法表征了催化剂还原和反应前后的物化性质,并在固定床反应器中考察了不同条件活化后催化剂上费托反应性能.结果表明,H2还原后的催化剂主要由α-Fe相组成,且随着还原温度的提高,α-Fe相的致密程度增加,平均晶粒尺寸增加,稳定性提高;再采用乙烯对H2还原后催化剂进行碳化,可有效控制α-Fe的碳化速度,使碳化过程主要发生在Fe晶粒表层,同时改变了催化剂在反应过程中的物相变化,乃至其催化性能.与纯H2或合成气气氛活化的催化剂相比,采用先H2还原后乙烯碳化的预处理方法能够明显提高催化剂的活性和稳定性.

关键词: 费托合成, 铁基催化剂, 相变调控, 还原温度, 还原气氛

Abstract: The phase transformations of a series of iron-based models of the catalysts used in the Fischer-Tropsch synthesis (FTS) were controlled using a combination of deep reduction followed by partial carburization. The catalysts were pretreated under a variety of different conditions and their performance in the FTS subsequently tested in a fixed-bed reactor. The physiochemical properties of the catalysts were characterized by X-ray diffraction (XRD), Mössbauer effect spectroscopy (MES), H2 temperature-programmed desorption (TPD), and laser Raman spectroscopy (LRS) before and after the reaction. The results indicated that the catalysts consisted predominately of α-Fe particles following the H2 reduction. The size of the crystals and the stability of the catalysts increased with increasing reduction temperature. The carburization process mainly occurred on the surface of the α-Fe particles, and the rate of the carburization process could be effectively controlled using C2H4. Compared with the catalysts activated with H2 or syngas, the catalysts initially activated with H2 followed by C2H4 exhibited better performance in the FTS.

Key words: Fischer-Tropsch synthesis, Iron-based catalyst, Phase control, Reduction temperature, Reduction atmosphere