催化学报 ›› 2015, Vol. 36 ›› Issue (8): 1333-1341.DOI: 10.1016/S1872-2067(15)60867-1

• 论文 • 上一篇    下一篇

Y对柴油车碳烟氧化催化剂MnOx-CeO2热稳定性的影响

张海龙a, 王健礼a, 曹毅a, 王益静b, 龚茂初a, 陈耀强a,c   

  1. a 四川大学化学学院, 绿色化学与技术教育部重点实验室, 四川成都610064;
    b 宁波远翔节能环保技术有限公司, 浙江宁波315800;
    c 四川省环境催化材料工程技术中心, 四川成都610064
  • 收稿日期:2015-02-26 修回日期:2015-04-14 出版日期:2015-07-29 发布日期:2015-07-30
  • 通讯作者: 陈耀强
  • 基金资助:

    国家高技术研究发展计划(863计划, 2013AA065304); 绿色催化四川省高校重点实验室开放课题(2013LF3004).

Effect of Y on improving the thermal stability of MnOx-CeO2 catalysts for diesel soot oxidation

Hailong Zhanga, Jianli Wanga, Yi Caoa, Yijing Wangb, Maochu Gonga, Yaoqiang Chena,c   

  1. a Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China;
    b Ningbo Yuanxiang Energy Saving and Environmental Protection Technology Company, Ningbo 315800, Zhejiang, China;
    c Sichuan Provincial Environmental Catalytic Material Engineering Technology Center, Chengdu 610064, Sichuan, China
  • Received:2015-02-26 Revised:2015-04-14 Online:2015-07-29 Published:2015-07-30
  • Supported by:

    This work was supported by the National High Technology Research and Development Program of China (863 Program, 2013AA065304) and the Open Object for Green Catalysis and Key Laboratory of Sichuan Provincial University (2013LF3004).

摘要:

采用共沉淀法制备了不同Y含量的MnOx-CeO2-Y2O3催化剂, 并用于NOx存在条件下的碳烟氧化反应. 通过在干空气气流中800 ℃焙烧12 h评价了这些催化剂的热稳定性. 采用X射线衍射、N2吸附-脱附、拉曼光谱、H2程序升温还原、储氧量测试、NO程序升温氧化、X射线光电子能谱和碳烟程序升温氧化等手段对催化剂进行了表征. 实验发现, Y的添加导致催化剂比表面积、还原性能和储氧能力下降, 从而影响了NO和碳烟的氧化活性. 然而, 热老化之后, Y可增大催化剂的热稳定性, 其中以6%-10% Y的添加效果最好, 它们的最大碳烟氧化速率温度仅增加了34-35 ℃. MnOx-CeO2催化剂的催化活性和热失活与其表面的Mn4+和氧物种密切相关.

关键词: MnOx-CeO2-Y2O3, 碳烟氧化活性, 热稳定性, 氧化还原性质, 氧储存能力

Abstract:

A series of MnOx-CeO2-Y2O3 catalysts with different Y loadings (0, 1, 3, 6, and 10 wt%) were prepared by a co-precipitation method and investigated for NOx-assisted soot oxidation. The thermal stabilities of these catalysts were evaluated by treating them at 800 ℃ for 12 h under dry air flow. The catalysts were characterized by X-ray diffraction, N2 adsorption-desorption, Raman spectroscopy, H2 temperature-programmed reduction, oxygen storage capacity, NO temperature- programmed oxidation, X-ray photoelectron spectroscopy, and soot temperature-programmed oxidation. The addition of Y led to decreased BET surface areas and poor low-temperature reduction abilities and oxygen storage capacities, which affected NO and soot oxidation activities. However, after aging, the doping of Y had effectively enhanced the stability of the catalytic activities for NO and soot oxidations, where the addition of 6%-10% Y achieved the optimum result because the maximal soot oxidation rate temperature was increased by only 34-35 ℃. Additionally, the catalytic activity and deactivation of MnOx-CeO2-containing catalysts were closely related to the presence of Mn4+ and oxygen species on the surface.

Key words: MnOx-CeO2-Y2O3, Soot oxidation activity, Thermal stability, Redox property, Oxygen storage capacity