催化学报 ›› 2020, Vol. 41 ›› Issue (4): 698-709.DOI: 10.1016/S1872-2067(19)63522-9

• 论文 • 上一篇    下一篇

温度调控二氧化硅隔离生物质碳纳米片构建固体超强酸

陈增添a,b, 肖钰雪a,b, 张超a, 伏再辉a, 黄婷a, 李庆锋a, 姚远雄a, 徐舒涛b, 潘晓丽b, 罗文豪b, 李昌志b,c   

  1. a 湖南师范大学石化新材料与资源精细利用国家地方联合工程实验室, 化学生物学与中药分析教育部重点实验室, 湖南长沙 410081;
    b 中国科学院大连化学物理研究所, 辽宁大连 116023;
    c 中国科学院洁净能源创新研究院, 辽宁大连 116023
  • 收稿日期:2019-10-26 修回日期:2019-11-23 出版日期:2020-04-18 发布日期:2019-12-12
  • 通讯作者: 张超, 伏再辉, 李昌志
  • 基金资助:
    国家自然科学基金(21690080,21676079,21546010,21690083,21878288);中国科学院战略性先导科技专项(XDB17020100);湖南省自然科学基金(2018JJ3335);湖南省高校创新平台开放基金(18K016);中国科学院洁净能源创新研究院合作基金(DNL180302).

Fabrication of a solid superacid with temperature-regulated silica-isolated biochar nanosheets

Zengtian Chena,b, Yuxue Xiaoa,b, Chao Zhanga, Zaihui Fua, Ting Huanga, Qingfeng Lia, Yuanxiong Yaoa, Shutao Xub, Xiaoli Panb, Wenhao Luob, Changzhi Lib,c   

  1. a National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China;
    b Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    c Dalian National Laboratory for Clean Energy, Chinese Aacdemy of Sciences, Dalian 116023, Liaoning, China
  • Received:2019-10-26 Revised:2019-11-23 Online:2020-04-18 Published:2019-12-12
  • Supported by:
    We acknowledge the financial support for this work by the National Natural Science Foundation of China (21690080, 21676079, 21546010, 21690083, 21878288), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB17020100), the Natural Science Foundation of Hunan Province (2018JJ3335), the Innovation Platform Open Fund of Hunan College (18K016), and DNL Cooperation Fund CAS (DNL180302).

摘要: 随着现代化学工业的发展,能源短缺和环境污染成为当下所面临的两大严峻问题.酸催化是化学工业中生产各种燃料和化学品的关键转化技术之一,发展基于固体酸的高效、环境友好催化转化技术在当代绿色化工领域中占有十分重要的地位.其中基于资源丰富和可再生的生物质衍生的固体碳磺酸(BCSAs)因其价廉易得、在一些重要的酸催化反应中显示出比商业化磺酸树脂更优的性能而成为当前催化研究领域的热点之一.然而,传统的BCSAs存在不稳定的致密层状结构及相对低的酸强度、酸位可接近性和传质效率等天然缺陷,制约了这类价廉易得的固体酸在工业上的广泛应用.本论文以综合解决BCSAs的这些缺陷为目标,开展其结构重组工程(SRE)策略研究.该SRE策略使用廉价的竹粉和水玻璃为主要原料,竹粉首先通过水热催化炭化法转化为层状生物质碳(BC),然后将BC材料先后用十六烷基三甲基溴化铵化学剥离、酸性硅溶胶插入、再脱水转化为二氧化硅隔离的碳纳米片,最后用浓硫酸磺化生成硅胶隔离的生物质碳磺酸.
TEM、STEM-EDS、BET、TGA和TMPO吸附31PMAS NMR表征结果表明,改变脱水温度可以调控硅胶隔离碳纳米片与其纳米粒子堆积状态,在250℃脱水条件下获得了具有松散颗粒堆积结构的二氧化硅高度隔离且非交联的碳纳米片,经磺化引入的磺酸基具有明显增强的热稳定性(其热分解温度比BCSA的高出23℃)和强于100%硫酸的超强酸性(90.4ppm 31P化学位移),并构建了丰富的分级狭缝孔(外表面积达211m2/g,呈双孔分布),其驱动力主要来源于引入的磺酸基之间的强氢键相互作用.将构建的生物质固体超强酸应用于典型的酸催化己二酸与异辛醇酯化、异丁烯与甲醇醚化和羟丙基纤维素水解反应中,与普通生物质碳磺酸和商用Amberlyst-15相比,其催化活性和稳定性(重复使用性)具有突出优势.这归因于生物质固体超强酸具有优异的结构稳定性、高度暴露的超强酸性位以及丰富的介孔-大孔双通道.本文不仅为构建生物碳基固体超强酸提供了一种新的结构重组策略,而且克服了普通生物质碳磺酸在应用中存在结构稳定性差、酸强度和孔隙率不理想的缺陷.

 

关键词: 生物质转化, 生物质碳磺酸, 二氧化硅隔离, 固体超强酸, 酸催化

Abstract: This paper reports a new strategy for the structural reconstruction of biomass carbon sulfonic acid (BCSA) to its solid superacid counterpart. In this approach, a cheap layered biomass carbon (BC) source is chemically exfoliated by cetyltrimethyl ammonium bromide and then converted to silica-isolated carbon nanosheets (CNSs) by a series of conversion steps. The state of the silica-isolated CNSs and the stacking density of their nanoparticles are regulated by the dehydration temperature. Only the highly isolated and non-crosslinked CNSs with loose particle stacking structures obtained upon dehydration at 250℃ can be turned into superacid sites (with stronger acidity than that of 100% H2SO4) after sulfonation. This is accompanied by the creation of abundant hierarchical slit pores with high external surface area, mainly driven by the strong hydrogen bonding interactions between the introduced sulfonic acid groups. In typical acid-catalyzed esterification, etherification, and hydrolysis reactions, the newly formed superacid exhibits superior catalytic activity and stability compared to those of common BCSA and commercial Amberlyst-15 catalysts, owing to its good structural stability, highly exposed stable superacidic sites, and abundance of mesoporous/macroporous channels with excellent mass transfer rate. This groundbreaking work not only provides a novel strategy for fabricating bio-based solid superacids, but also overcomes the drawbacks of BCSA, i.e., unsatisfactory structural stability, acidity, and porosity.

Key words: Biomass conversion, Bio-based sulfonic acid, Silica isolation, Solid superacid, Acid catalysis

中图分类号: