催化学报 ›› 2022, Vol. 43 ›› Issue (11): 2871-2880.DOI: 10.1016/S1872-2067(21)64025-1

• 论文 • 上一篇    下一篇

突破过渡金属氧化物氮还原反应的热力学火山图: 对材料筛选的影响

Kai S. Exnera,b,c,*()   

  1. a杜伊斯堡-埃森大学化学学院,理论无机化学, 埃森, 德国
    b德国精英大学探索联盟, 波鸿, 德国
    c杜伊斯堡-埃森纳米集成中心, 杜伊斯堡, 德国
  • 收稿日期:2021-12-07 接受日期:2022-01-18 出版日期:2022-10-20 发布日期:2022-10-20
  • 通讯作者: Kai S. Exner

Beyond the thermodynamic volcano picture in the nitrogen reduction reaction over transition-metal oxides: Implications for materials screening

Kai S. Exnera,b,c,*()   

  1. aUniversity Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße, 545141 Essen, Germany
    bCluster of Excellence RESOLV, Bochum, Germany
    cCenter for Nanointegration (CENIDE) Duisburg-Essen, Duisburg, Germany
  • Received:2021-12-07 Accepted:2022-01-18 Online:2022-10-20 Published:2022-10-20
  • Contact: Kai S. Exner

摘要:

电催化氮气合成氨被认为是高能耗和高污染的Haber-Bosch工艺的一种可持续性替代方法. 过渡金属氧化物电极对竞争性析氢反应高活性较低, 因此, 有望成为一类具有较好选择性的氮还原(NRR)材料. 目前, 一般借助密度泛函理论计算评估一类材料的催化活性趋势,通过标度关系和火山图的概念来理解. 该热力学理论指出, *NNH吸附质或NH3的形成是潜在的反应决速步骤. 因此, NRR催化剂的开发主要致力于优化这两个基元步骤. 本文通过使用最近发展的活性描述符Gmax(η), 将过电位和动力学的影响引入过渡金属氧化物NRR的火山图中. 结果表明, 热力学火山图过于简单, 因为反应决速步骤可能在接近火山顶点时发生变化, 当反应接近火山顶点时, 表面反应可能成为反应的绝速步骤. 此外, 本文还展示了如何将肼的形成作为竞争性副反应纳入火山图, 这对于与*NNH弱键合的催化剂非常重要, 其中肼的形成可能与氨的形成竞争. 本文方法不局限于过渡金属氧化物, 具有普遍性, 所呈现的动力学火山曲线应有助于推动固氮NRR催化剂的发展.

关键词: 电催化, 氮还原反应, 活性描述符Gmax(η), 火山图, 氨,

Abstract:

Electrocatalytic production of ammonia from dinitrogen is considered as a sustainable alternative to the energy-demanding and pollutive Haber-Bosch process. A promising class of materials for selective nitrogen reduction (NRR) corresponds to transition-metal oxides given that these electrodes do not show a high activity toward the competing hydrogen evolution reaction. So far, density functional theory calculations have been used to comprehend trends in a class of materials by using the concept of scaling relations and volcano plots. This thermodynamic theory pinpoints that either the formation of the *NNH adsorbate or the formation of ammonia are reconciled with the potential-determining reaction steps. Thus, the development of NRR catalyst has largely focused on the optimization of these two elementary processes. In the present contribution, overpotential and kinetic effects are factored into the volcano plot for the NRR over transition-metal oxides by making use of the recently introduced activity descriptor Gmax(η). It is illustrated that the thermodynamic volcano picture is too simplistic as the limiting reaction step may alter close to the volcano apex: there, particularly surface reactions may govern the reaction rate. In addition, it is demonstrated how to include the formation of hydrazine as a competing side reaction into the volcano plot, which is of importance for weak binding *NNH catalysts where the formation of hydrazine may compete with the formation of ammonia. Given that the outlined methodology in this manuscript is universal and not restricted to the class of transition-metal oxides, the presented kinetic volcano picture may contribute to the development of NRR catalysts for nitrogen fixation.

Key words: Electrocatalysis, Nitrogen reduction reaction, Activity descriptor Gmax(η), Volcano plot, Ammonia, Hydrazine