催化学报 ›› 2022, Vol. 43 ›› Issue (4): 1131-1138.DOI: 10.1016/S1872-2067(21)63951-7

• 论文 • 上一篇    下一篇

Co诱导双位点协同效应实现高效肼电催化氧化

周波, 李梦雨, 李莹莹, 刘彦伯, 逯宇轩, 李巍, 吴雨洁, 霍甲, 王燕勇*(), 陶李#(), 王双印   

  1. 湖南大学化学化工学院, 化学/生物传感与化学计量学国家重点实验室, 湖南长沙410082
  • 收稿日期:2021-07-26 接受日期:2021-07-26 出版日期:2022-03-05 发布日期:2022-03-01
  • 通讯作者: 王燕勇,陶李
  • 作者简介:第一联系人:

    共同第一作者

  • 基金资助:
    国家自然科学基金(U19A2017);国家自然科学基金(21825201);国家自然科学基金(21573066);国家自然科学基金(21902047);国家自然科学基金(21905088);湖南省自然科学基金(2020JJ5045);湖南省优秀博士后创新人才项目(RC20202020);湖南省优秀博士后创新人才项目(RC20202023)

Cobalt-regulation-induced dual active sites in Ni2P for hydrazine electrooxidation

Bo Zhou, Mengyu Li, Yingying Li, Yanbo Liu, Yuxuan Lu, Wei Li, Yujie Wu, Jia Huo, Yanyong Wang*(), Li Tao#(), Shuangyin Wang   

  1. State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, Hunan, China
  • Received:2021-07-26 Accepted:2021-07-26 Online:2022-03-05 Published:2022-03-01
  • Contact: Yanyong Wang, Li Tao
  • About author:First author contact:

    Contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(U19A2017);National Natural Science Foundation of China(21825201);National Natural Science Foundation of China(21573066);National Natural Science Foundation of China(21902047);National Natural Science Foundation of China(21905088);Provincial Natural Science Foundation of Hunan(2020JJ5045);Postdoctoral Innovative Talents Program of Hunan Province(RC20202020);Postdoctoral Innovative Talents Program of Hunan Province(RC20202023)

摘要:

作为一种重要的能量载体, 肼(N2H4)具有能量密度高、反应动力学快、常温下呈液态和燃烧无含碳副产物生成等优点, 因此, 肼电氧化反应(HzOR)成为解决能源危机以及相关环境问题的理想选择之一. 与传统的氢和醇基燃料电池相比, 直接肼燃料电池(DHFC, N2H4/O2, EOCP = 1.56 V)更适合实际应用. 然而, DHFC受到HzOR缓慢动力学的限制, 导致较高的过电位和较大的电池电压损耗, 因此, 距离实现商业化仍有一定差距. 此外, N2H4辅助水分解系统(HAWS)用于制氢, 可以显著降低水分解的电解槽电压, 以实现节能制氢. 因此, 迫切需要开发性能优异的HzOR催化剂和进行深入的理论研究.
长期以来, 过渡金属磷化物由于具有良好的HzOR催化活性而备受关注, 但是其本征活性较低, 且对其催化机理研究不够深入. 人们希望更好地了解金属磷化物上肼电氧化的电化学反应行为, 同时大量研究表明可以通过优化反应动力学来提升催化体系性能. 本文通过钴调节Ni2P电极表面的HzOR, 引入双活性位点效应从而优化肼的脱氢动力学. 通过简单地在Ni2P中掺杂Co, (Ni0.6Co0.4)2P电极上仅需113 mV即可驱动50 mA cm-2, 明显低于Ni2P (174 mV)和Co2P (180 mV). 组装的DHFC对(Ni0.6Co0.4)2P电极的峰功率密度为263.0 mW cm-2, 比Ni2P (200.8 mW cm-2)和Pt/C (131.8 mW cm-2)分别高30%和99.5%, 展现出了应用潜力. 与此同时, (Ni0.6Co0.4)2P电极耦合Co2P析氢电极组成肼辅助水分解体系, 两电极极化曲线结果表明, 此系统驱动10 mA cm-2的电流密度只需要0.228 V的超低电解槽电压. 然而, 相同条件下完整水分解体系需要高达1.784 V的电解槽电压来驱动相同的电流密度. 可见, HAWS系统用HzOR代替OER制氢具有可行性和实用性实验和理论研究结果表明, Co掺杂可以显著降低N2H4在Ni位点上的吸附能, 并改变HzOR的决速步骤. 对应的(Ni0.6Co0.4)2P电极表面HzOR的塔菲尔斜率为136 mV dec-1, 介于Co2P电极(216 mV dec-1)和Ni2P电极(121 mV dec-1)之间, 并且决速步骤的能垒也显著地降低(0.37 vs. 0.75 eV), 表明Co的引入显著地调谐了Ni2P的电子结构, 实现了与HzOR更匹配的催化剂设计. 与此同时, 对反应过程中的活性位点分析表明, Co的引入还可以作为最佳反应配位条件下的中心活性位点, 以降低RDS对HzOR的自由能.

关键词: 肼电氧化反应, 直接肼燃料电池, 电催化剂, 活性, 磷化镍

Abstract:

Better understanding of electrochemical reaction behaviors of hydrazine electrooxidation at metal phosphides has long been desired and the optimization of reaction kinetics has been proved to be operable. Herein, the dehydrogenation kinetics of hydrazine electrooxidation at Ni2P is adjusted by Co as the (Ni0.6Co0.4)2P catalyzes HzOR effectively with onset potential of -45 mV and only 113 mV is needed to drive the current density of 50 mA cm‒2, showing over 60 mV lower than Ni2P and Co2P. It also delivers the maximum power density of 263.0 mW cm‒2for direct hydrazine fuel cell. Detailed experimental results revealed that Co doping not only decreases the adsorption energy of N2H4 on Ni sites, lowering the energy barrier for dehydrogenation, but also acts as the active sites in the optimal reaction coordination to boost the reaction kinetics. This work represents a breakthrough in improving the catalytic performance of non-precious metal electrocatalysts for hydrazine electrooxidation and highlights an energy-saving electrochemical hydrogen production method.

Key words: Hydrazine electrooxidation reaction, Direct hydrazine fuel cell, Electrocatalyst, Activity, Nickel phosphide