催化学报 ›› 2023, Vol. 51: 216-224.DOI: 10.1016/S1872-2067(23)64471-7

• 论文 • 上一篇    下一篇

缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池

赵磊a,1, 张震a,1, 朱昭昭a, 李平波b, 蒋金霞c, 杨婷婷b, 熊佩a, 安旭光d, 牛晓滨a, 齐学强b, 陈俊松a,d, 吴睿a,e,*()   

  1. a电子科技大学材料与能源学院, 四川成都611731
    b重庆理工大学化学化工学院, 重庆400054
    c重庆医药高等专科学校, 重庆401331
    d成都大学高等研究院新材料交叉研究中心, 四川成都610106
    e中国炭黑研究院, 四川自贡643000
  • 收稿日期:2023-05-28 接受日期:2023-06-12 出版日期:2023-08-18 发布日期:2023-09-11
  • 通讯作者: *电子信箱: ruiwu0904@uestc.edu.cn (吴睿).
  • 作者简介:第一联系人:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2018YFB1502503);四川省科技计划项目(2023YFH0026)

Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries

Lei Zhaoa,1, Zhen Zhanga,1, Zhaozhao Zhua, Pingbo Lib, Jinxia Jiangc, Tingting Yangb, Pei Xionga, Xuguang And, Xiaobin Niua, Xueqiang Qib, Jun Song Chena,d, Rui Wua,e,*()   

  1. aSchool of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
    bCollege of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
    cChongqing Medical and Pharmaceutical College, Chongqing 401331, China
    dInterdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
    eChina Carbon Black Institute, Zigong 643000, Sichuan, China
  • Received:2023-05-28 Accepted:2023-06-12 Online:2023-08-18 Published:2023-09-11
  • Contact: *E-mail: ruiwu0904@uestc.edu.cn (R. Wu).
  • About author:First author contact:1Contributed equally to this work.
  • Supported by:
    National Key Research and Development Program(2018YFB1502503);Sichuan Science and Technology Program(2023YFH0026)

摘要:

锌-空气电池(ZAB)因其能量密度高、环境友好、成本低以及安全性高而备受关注.然而,空气电极上的氧还原反应(ORR)动力学缓慢,严重限制了ZAB的输出功率.尽管铂基催化剂展现出优异的ORR催化活性,但高昂的成本制约其大规模商业化应用.因此,迫切需要开发高效、低成本的ORR电催化剂.研究表明,具有原子分散Co-N4活性位点的Co-N-C单原子催化剂是理想的ORR非贵金属催化剂,但其仍然存在与反应关键中间体结合能较高的难题.目前的研究主要通过调控单原子配位环境与增大活性位点密度来提高Co-N-C催化剂的活性, 但如何精确控制中心金属电子结构以及避免高温下金属原子的团聚仍面临巨大挑战.除了单原子活性位点外,催化剂载体的键合结构、电荷分布状态亦会影响载体本身和单原子位点的催化活性.然而,现有的研究主要聚焦于单原子位点或无金属催化剂单方面活性的提升,关于它们之间的相互作用对于催化性能影响的研究相对很少.
为了进一步提高Co单原子催化剂的催化活性,本文通过简单的模板法与NH3二次处理策略制备了氮掺杂缺陷碳负载的Co-N5位点单原子催化剂.电感耦合等离子体发射光谱结果表明,单原子Co的金属负载量高达2.57wt%.此外,相比于未经过NH3二次处理的Co-Nx/HC样品,Co-N5/DHC样品在电子顺磁共振谱中g = 2.003处呈现出更明显的共振信号,在C1s高分辨谱中具有更低的C‒C(sp2杂化)/C‒N(sp3杂化)比例以及明显增加的吡啶氮信号,证实了Co-N5/DHC显著提升的氮掺杂碳缺陷浓度并具有丰富的边界/缺陷位点.同时,X射线吸收谱与球差矫正透射电子显微镜结果表明所制备的样品为原子分散的Co-N5结构,从而证明成功制备了缺陷氮掺杂碳耦合Co-N5位点单原子催化剂.电化学测试结果表明,缺陷氮掺杂碳耦合Co-N5位点后表现较好的ORR性能,半波电位达到0.877V,明显高于Co-Nx/HC对比样品和商业化Pt/C催化剂.Koutecky-Levich曲线和旋转盘环电极测试结果表明,Co-N5/DHC催化剂的高效4e反应路径.且在10000次的加速老化测试中,Co-N5/DHC半波电位仅降低了7mV,稳定性优于Pt/C.以Co-N5/DHC为阴极催化剂组装的ZAB开路电压为1.45V,峰值输出功率密度能够达到160.7mW cm‒2,并能提供766.2mAh g Zn−1的比容量,展现出较高的应用前景.密度泛函理论计算表明,Co-N5位点与缺陷氮掺杂碳的相互作用诱导Co中心位点电子的重新分布,降低了ORR反应能垒.综上,本文为设计与合成高性能的Co单原子催化剂,用于先进的可再生能源转换系统提供了一种新思路.

关键词: 单原子催化剂, Co-N5位点, 缺陷氮掺杂碳, 氧还原反应, 锌-空气电池

Abstract:

Transition metal single-atom catalysts have attracted considerable attention for their applicability in electrocatalytic oxygen reduction reactions (ORR), but it is still very challenging to regulate the interaction between the active sites and oxygen-containing intermediates. In this study, atomically dispersed Co-N5 sites integrated with defective N-doped carbon (Co-N5/DHC) were developed using a facile templating approach, followed by NH3 treatment. NH3 can simultaneously etch inactive amorphous substrates on the surfaces of metal sites and construct intrinsic carbon defects, thereby increasing the number of both metal and metal-free active sites. By bridging the intrinsic carbon defects and metal sites, the optimized Co-N5/DHC catalyst exhibited significantly improved electrocatalytic ORR performance compared to the pristine Co-Nx/HC sample (cobalt-nitrogen sites anchored on heteroatom-doped carbon). Density functional calculations revealed that the strong interaction between the Co-N5 sites and carbon defects modified the electronic localization, thus optimizing the binding energy with oxygen-containing intermediates and resulting in significantly improved ORR catalytic activity with a half-wave potential of 0.877 V. In addition, a zinc-air battery assembled with the Co-N5/DHC as the cathode achieves a maximum power density of 160.7 mW cm-2 and affords a specific capacity of 766.2 mA h gZn−1.

Key words: Single-atom catalyst, Co-N5 sites, Defective N-doped carbon, Oxygen reduction reaction, Zinc-air batteries