催化学报 ›› 2024, Vol. 65: 79-88.DOI: 10.1016/S1872-2067(24)60112-9

• 论文 • 上一篇    下一篇

低温氨-选择催化还原用氧化锰-沸石杂化催化剂上Brønsted/Lewis酸位的作用

Hyun Sub Kima, Hwangho Leea, Hongbeom Parka, Inhak Songb,c,*(), Do Heui Kima,*()   

  1. a首尔国立大学化学工艺研究所, 化学与生物工程学院, 首尔, 韩国
    b韩国大学能源与环境研究生院, 能源环境政策与技术系, 首尔, 韩国
    c韩国大学工程学院, 综合能源工程系, 首尔, 韩国
  • 收稿日期:2024-05-31 接受日期:2024-07-14 出版日期:2024-10-18 发布日期:2024-10-15
  • 通讯作者: *电子信箱: inhaksong@korea.ac.kr (I. Song), dohkim@snu.ac.kr (D. Kim).

Understanding the roles of Brønsted/Lewis acid sites on manganese oxide-zeolite hybrid catalysts for low-temperature NH3-SCR

Hyun Sub Kima, Hwangho Leea, Hongbeom Parka, Inhak Songb,c,*(), Do Heui Kima,*()   

  1. aSchool of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    bDepartment of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea
    cDepartment of Integrative Energy Engineering, College of Engineering, Korea University, Seoul 02841, Republic of Korea
  • Received:2024-05-31 Accepted:2024-07-14 Online:2024-10-18 Published:2024-10-15
  • Contact: *E-mail: inhaksong@korea.ac.kr (I. Song), dohkim@snu.ac.kr (D. Kim).

摘要:

尽管金属氧化物-沸石杂化材料通过中间物种的颗粒间扩散在氮氧化物去除反应中增强了催化活性和选择性, 但它们在酸性位点上的后续反应机理尚不清楚, 需要进一步深入研究. 本文通过引入钾离子精确调节了杂化材料中Brønsted/Lewis酸位点的分布, 钾离子不仅选择性地与Brønsted酸位点结合, 而且可能影响活化NO物种的形成和扩散. 原位漫反射红外傅里叶变换光谱和NH3选择性催化还原NOx (NH3-SCR)反应结果表明, MnOx上的Lewis酸位点对NO还原的活性更高, 但对N2的选择性低于Brønsted酸位点. MnOx上Brønsted酸位点主要产生N2, 而Lewis酸位点主要形成了N2O, 使得N2选择性较低. Y沸石上Brønsted酸比MnOx上的更强, 从而加速了NH3-SCR反应, 其中从MnOx颗粒扩散来的亚硝酸盐/硝酸盐物种迅速转化为N2. 因此, 设计催化剂非常重要的是使MnOx上形成的活性NO物种扩散到H-Y沸石的Brønsted酸位, 而不是扩散到MnOx的Brønsted酸位并选择性分解. 对于物理混合的H-MnOx+H-Y样品, H-MnOx中丰富的Brønsted/Lewis酸位点在颗粒间扩散前会导致活性NO物种的大量消耗, 从而阻碍了协同效应的增强. 此外, 研究发现K-MnOx中嵌入的K+对NO还原速率具有意想不到的促进作用, 这可能是由于活化的NO物种在K-MnOx上的扩散速度比H-MnOx快. 综上, 本文通过确定酸位点在两种不同成分中的作用, 对设计高效的金属氧化物-沸石杂化催化剂提供参考.

关键词: 金属氧化物-分子筛杂化材料, 酸性位的作用, 氧化锰, 物理混合, 氨选择催化还原NOx

Abstract:

Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NOx removal reactions through the inter-particle diffusion of intermediate species, their subsequent reaction mechanism on acid sites is still unclear and requires investigation. In this study, the distribution of Brønsted/Lewis acid sites in the hybrid materials was precisely adjusted by introducing potassium ions, which not only selectively bind to Brønsted acid sites but also potentially affect the formation and diffusion of activated NO species. Systematic in situ diffuse reflectance infrared Fourier transform spectroscopy analyses coupled with selective catalytic reduction of NOx with NH3 (NH3-SCR) reaction demonstrate that the Lewis acid sites over MnOx are more active for NO reduction but have lower selectivity to N2 than Brønsted acids sites. Brønsted acid sites primarily produce N2, whereas Lewis acid sites primarily produce N2O, contributing to unfavorable N2 selectivity. The Brønsted acid sites present in Y zeolite, which are stronger than those on MnOx, accelerate the NH3-SCR reaction in which the nitrite/nitrate species diffused from the MnOx particles rapidly convert into the N2. Therefore, it is important to design the catalyst so that the activated NO species formed in MnOx diffuse to and are selectively decomposed on the Brønsted acid sites of H-Y zeolite rather than that of MnOx particle. For the physically mixed H-MnOx+H-Y sample, the abundant Brønsted/Lewis acid sites in H-MnOx give rise to significant consumption of activated NO species before their inter-particle diffusion, thereby hindering the enhancement of the synergistic effects. Furthermore, we found that the intercalated K+ in K-MnOx has an unexpected favorable role in the NO reduction rate, probably owing to faster diffusion of the activated NO species on K-MnOx than H-MnOx. This study will help to design promising metal oxide-zeolite hybrid catalysts by identifying the role of the acid sites in two different constituents.

Key words: Hybrid metal oxide-zeolite, The role of acid sites, Manganese oxides, Physical mixing, Selective catalytic reduction of NOx with NH3