催化学报 ›› 2025, Vol. 69: 203-218.DOI: 10.1016/S1872-2067(24)60203-2

• 论文 • 上一篇    下一篇

分级结构NiO纳米管/纳米片表面限域生长Pt亚纳米团簇催化剂用于尿素辅助节能产氢

李家欣a, 吕燕a, 吴雪岩a, 郭新玉a, 杨卓君a, 郭继玺a,*(), 周天华a,b,*(), 贾殿赠a,*()   

  1. a新疆大学化学学院, 碳基能源化学与利用国家重点实验室, 新疆乌鲁木齐 830017
    b中国科学院福建物质结构研究所, 结构化学国家重点实验室, 福建福州 350002
  • 收稿日期:2024-09-16 接受日期:2024-11-27 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: jxguo1012@163.com (郭继玺), thzhou@fjirsm.ac.cn (周天华), jdz@xju.edu.cn (贾殿赠).
  • 基金资助:
    国家自然科学基金(U2003307);国家自然科学基金(22105163);新疆维吾尔自治区科技创新带头人(2022TSYCLJ0043);新疆维吾尔自治区自然科学基金(2021D01D09);新疆维吾尔自治区自然科学基金(2021D01C097);新疆维吾尔自治区重点实验室开放项目(2023D04032);新疆省高等学校科研计划(XJEDU2021Y005)

Surface confinement of sub-1 nm Pt nanoclusters on 1D/2D NiO nanotubes/nanosheets as an effective electrocatalyst for urea-assisted energy-saving hydrogen production

Jiaxin Lia, Yan Lva, Xueyan Wua, Xinyu Guoa, Zhuojun Yanga, Jixi Guoa,*(), Tianhua Zhoua,b,*(), Dianzeng Jiaa,*()   

  1. aState Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, China
    bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
  • Received:2024-09-16 Accepted:2024-11-27 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: jxguo1012@163.com (J. Guo), thzhou@fjirsm.ac.cn (T. Zhou), jdz@xju.edu.cn (D. Jia).
  • Supported by:
    National Natural Science Foundation of China(U2003307);National Natural Science Foundation of China(22105163);Science and technology innovation leader of Xinjiang Uygur Autonomous Region of China(2022TSYCLJ0043);Natural Science Foundation of Xinjiang Uygur Autonomous Region of China(2021D01D09);Natural Science Foundation of Xinjiang Uygur Autonomous Region of China(2021D01C097);Open Project of Key Laboratory in Xinjiang Uygur Autonomous Region of China(2023D04032);Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2021Y005)

摘要:

在载体上分散具有催化活性的金属纳米颗粒(NPs)是提高贵金属利用率、降低催化剂成本的有效策略.  大量研究表明, 当NPs尺寸缩小至亚纳米尺度时, 表面原子在总原子数中的比例显著增加, 这对于开发高效低廉的贵金属基催化剂具有重要意义.  亚纳米簇(SNCs)因其丰富的金属-金属键及金属-载体键, 能够优化反应物的吸附与解吸, 并通过调控金属-载体相互作用提升催化性能.  尽管SNCs催化剂具有优异的催化活性, 但由于其较高的表面能和难以形成牢固的共价键, 使其在恶劣的操作条件下极易团聚, 从而降低其催化活性及稳定性.  为了克服SNCs催化剂成本高和稳定性差的问题, 引入过渡金属基化合物作为载体来分散和锚定SNCs催化剂, 是实现其高效利用的可行方法.  

本文结合空间域限域和退火处理设计了一种Pt/NiO/NF催化剂, 其中亚1 nm Pt纳米簇被锚定在具有1D/2D纳米管/纳米片分级结构的NiO载体上.  独特的1D/2D分级结构有助于亚1 nm尺寸Pt纳米团簇的限域生长, 既防止了它们在形成过程中向更大尺寸迁移, 也阻止了其在析氢反应(HER)和尿素氧化反应(UOR)过程中从NiO载体上脱离.  在亚1 nm Pt纳米团簇与NiO载体之间形成的强金属-载体相互作用(SMSI)诱导了大量电荷在Pt和NiO之间的异质界面周围重新分布, 从而促使多活性位点形成以实现在碱性条件下对HER和UOR的较好的电催化活性和稳定性.  微观结构分析和理论计算结果表明, 亚1 nm的Pt纳米簇通过Pt-O-Ni键牢固地锚定在NiO载体上, 导致Pt中心的电子向NiO载体转移.  这种电子转移不仅调节了Pt的电子结构增强了Pt位点的催化活性,还通过SMSI优化了NiO结构中Ni位点的催化活性.  两者的协同作用促进了反应中间体在Pt/NiO/NF催化剂表面的吸附与解吸过程, 从而显著增强了催化剂的本征催化.  所制Pt/NiO/NF催化剂在HER中仅需12和136 mV的过电位即可分别驱动10和100 mA cm-2的电流密度, 并且在500 mA cm-2的电流密度下连续运行260 h, 保持96%的电催化稳定性.  特别是, 当制备的Pt/NiO/NF催化剂作为自支撑电极用于HER||UOR耦合系统时, 仅需1.53 V的电池电压即可驱动50 mA cm-2的电流密度, 比相同条件下的传统水电解系统低约300 mV.  研究表明, 采用纳米管/纳米片结构的NiO作为载体, 不仅能够有效分散并稳定Pt亚纳米团簇, 还通过金属-载体相互作用精细调控Pt团簇的电子结构.  这种调控改变了Pt的电子密度分布, 优化了反应物的吸附和解吸过程, 从而显著提高了Pt原子在催化反应中的利用率.  此外, NiO载体对Pt的电子效应增强了催化剂的催化性能和长期稳定性, 显著提高了催化剂在复杂反应中的表现.  

综上, 本文通过空间限域和强金属-载体相互作用精确调控亚1 nm Pt亚纳米团簇的尺寸及其电子结构, 并结合NiO载体的协同效应, 显著提升了Pt/NiO/NF催化剂的电催化活性与稳定性.  Pt团簇尺寸的调节使得更多的表面原子暴露于催化反应中, 同时通过调控Pt纳米团簇的电子结构优化了其催化性能.  此外, 具有纳米管/纳米片分级结构的NiO载体强化了金属-载体相互作用, 抑制了Pt团簇的团聚, 显著提高了催化剂的长期稳定性.  本文为高效且稳定的负载型纳米金属团簇催化剂的设计提供了新的理论框架, 在能源转化、环境催化等领域具有广泛的应用前景, .

关键词: 金属-载体相互作用, 亚纳米团簇, 析氢反应, 尺寸工程, 尿素氧化反应

Abstract:

To address the high cost and limited electrochemical endurance of Pt-based electrocatalysts, the appropriate introduction of transition metal-based compounds as supports to disperse and anchor Pt species offers a promising approach for improving catalytic efficiency. In this study, sub-1 nm Pt nanoclusters were uniformly confined on NiO supports with a hierarchical nanotube/nanosheet structure (Pt/NiO/NF) through a combination of spatial domain confinement and annealing. The resulting catalyst exhibited excellent electrocatalytic activity and stability for hydrogen evolution (HER) and urea oxidation reactions (UOR) under alkaline conditions. Structural characterization and density functional theory calculations demonstrated that sub-1 nm Pt nanoclusters were immobilized on the NiO supports by Pt-O-Ni bonds at the interface. The strong metal-support interaction induced massive charge redistribution around the heterointerface, leading to the formation of multiple active sites. The Pt/NiO/NF catalyst only required an overpotential of 12 and 136 mV to actuate current densities of 10 and 100 mA cm-2 for the HER, respectively, and maintained a voltage retention of 96% for 260 h of continuous operation at a current density of 500 mA cm-2. Notably, in energy-efficient hydrogen production systems coupled with the HER and UOR, the catalyst required cell voltages of 1.37 and 1.53 V to drive current densities of 10 and 50 mA cm-2, respectively—approximately 300 mV lower than conventional water electrolysis systems. This study presents a novel pathway for designing highly efficient and robust sub-nanometer metal cluster catalysts.

Key words: Metal-support interaction, Sub-nanometric cluster, Hydrogen evolution reaction, Size engineering, Urea oxidation reaction