催化学报 ›› 2025, Vol. 70: 431-443.DOI: 10.1016/S1872-2067(24)60247-0

• 论文 • 上一篇    下一篇

构建卟啉基共价有机框架与Nb2C MXene的S型异质结并应用于光催化过氧化氢生产

许明阳a,1, 李真真b,1, 沈荣晨a,1, 张欣c,*(), 张治红b,*(), 张鹏d,*(), 李鑫a,*()   

  1. a华南农业大学材料与能源学院, 生物质工程研究院, 生物基材料与能源教育部重点实验室, 广东广州 510642
    b郑州轻工业大学材料与化学工程学院, 河南郑州 450001
    c湖北文理学院低维光电材料与器件湖北省重点实验室, 湖北襄阳 441053
    d郑州大学材料科学与工程学院, 设计低碳环保材料国际合作国家中心, 河南郑州 450001
  • 收稿日期:2024-11-24 接受日期:2025-02-22 出版日期:2025-03-18 发布日期:2025-03-20
  • 通讯作者: * 电子信箱: Xinli@scau.edu.cn (李鑫),2006025@zzuli.edu.cn (张治红),xinzhang@hbuas.edu.cn (张欣),zhangp@zzu.edu.cn (张鹏).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22378148);国家自然科学基金(52472110);国家自然科学基金(2230082074);广东省自然科学基金(2024A1515012433)

Constructing S-scheme heterojunction between porphyrinyl covalent organic frameworks and Nb2C MXene for photocatalytic H2O2 production

Mingyang Xua,1, Zhenzhen Lib,1, Rongchen Shena,1, Xin Zhangc,*(), Zhihong Zhangb,*(), Peng Zhangd,*(), Xin Lia,*()   

  1. aInstitute of Biomass Engineering, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
    bCollege of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, Henan, China
    cHubei Key Lab Low Dimens Optoelect Mat & Devices, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
    dState Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2024-11-24 Accepted:2025-02-22 Online:2025-03-18 Published:2025-03-20
  • Contact: * E-mail: Xinli@scau.edu.cn (X. Li),2006025@zzuli.edu.cn, (Z. Zhang),xinzhang@hbuas.edu.cn (X. Zhang),zhangp@zzu.edu.cn (P. Zhang).
  • About author:1 Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22378148);National Natural Science Foundation of China(52472110);National Natural Science Foundation of China(2230082074);Natural Science Foundation of Guangdong Province(2024A1515012433)

摘要:

过氧化氢(H2O2)作为一种重要的工业化学氧化剂, 广泛应用于水处理、化学合成、医疗领域、纺织漂白、消毒以及燃料电池等领域. 然而, 目前工业上主要采用的蒽醌氧化法合成H2O2, 尽管工艺成熟, 但仍存在能耗高、副产物多、后续纯化复杂等问题. 基于此, 在纯水中通过光催化的两电子氧还原反应(2e ORR)制备H2O2被视为一种绿色、节能且安全的策略. 然而, 该体系的实际应用受到太阳能光动力学缓慢、选择性不足及光能利用效率低等限制. 因此, 我们前期设计了一种新型二维(2D)卟啉基共价有机框架(Tph-Dha-COF)与Nb2C MXene纳米片组装的S型异质结光催化剂. 该催化剂通过2e ORR实现了高效光催化合成H2O2, 并同时利用原位生成的H2O2实现了细菌的高效灭活. 尽管异质结的构建已被证明是提升COF材料光催化性能的有效策略, 但基于Nb2C的COF光催化剂在H2O2光催化合成中的研究仍较为少见.

本文首先通过氨基化处理Nb2C MXene制备了Nb2C-NH2, 随后采用溶剂热法以Tph和Dha为前驱体, 在Nb2C-NH2表面原位合成了S型异质结光催化剂(Tph-Dha-COF@Nb2C). 通过X射线衍射、傅里叶变换红外光谱、高分辨透射电子显微镜及紫外光电子能谱等表征手段, 证实了Tph-Dha-COF@Nb2C异质结的成功构筑. 同时, 结果表明该异质结在紫外-可见光谱范围内具有良好的光吸收性能, 显著增强了光生电子-空穴对的分离与迁移效率, 并且具备较大的比表面积. 通过紫外-可见分光光度法评估了Nb2C-NH2, Tph-Dha-COF及Tph-Dha-COF@Nb2C的光催化活性. 在可见光照射下, Tph-Dha-COF@Nb2C的H2O2产率达1833 μmol g‒1 h‒1, 显著高于Tph-Dha-COF和Nb2C-NH2. 此外, 在无牺牲剂条件下, 太阳能转化效率达到0.345%, 明显高于Tph-Dha-COF (0.226%)和Nb2C-NH2 (0.051%). 进一步结合原位FT-IR谱与密度泛函理论计算, 揭示了光催化反应路径及关键中间体的种类, 证实了Nb2C-NH2的引入促进了O2在异质结表面的侧位吸附, 从而有利于超氧自由基(•O2)的生成, 并有效降低了光催化反应的能量势垒. 特别是, 光催化生成的H2O2对细菌灭活率超过90%, 进一步验证了其在抗菌领域的潜在应用价值.

综上所述, 本研究通过Nb2C-NH2与卟啉基COF材料的协同作用, 成功构建了S型异质结光催化剂, 显著提高了COF的电荷分离与迁移效率, 并拓宽了其光吸收范围, 从而实现了H2O2光催化合成的高效性与选择性. 该异质结的构筑为光催化H2O2的绿色制备提供了一种新颖而有效的策略, 同时也为其在环境和能源领域的实际应用奠定了基础.

关键词: 光催化, 过氧化氢, 共价有机框架, Nb2C MXene, S型异质结

Abstract:

We have developed a novel S-scheme heterojunction photocatalyst for the photocatalytic production of hydrogen peroxide (H2O2) via a two-electron (2e) oxygen reduction reaction. This S-scheme heterojunction Tph-Dha-COF@Nb2C was fabricated via the in-situ solvothermal growth of Tph-Dha-COF nanostructures on amino-functionalized Nb2C MXene nanoflakes (Nb2C-NH2). The integration of Nb2C significantly extended the visible light absorption of Tph-Dha-COF into the near-infrared region for photocatalytic H2O2 production. The Tph-Dha-COF@Nb2C composite demonstrated efficient charge separation, rapid electron transfer, and enhanced oxygen adsorption. Consequently, the Tph-Dha-COF@Nb2C heterojunction exhibited a high H2O2 production rate of 1833 μmol g‒1 h‒1 without sacrificial agents. In-situ Fourier transformed infrared spectroscopy and density functional theory calculations revealed the photocatalytic H2O2 production mechanism. The generated H2O2 demonstrated enhanced antibacterial activity. This work presents the first application of Nb2C in the photocatalytic synthesis of H2O2 and provides a novel strategy for constructing COF-based heterojunctions for photocatalytic H2O2 generation and wastewater treatment.

Key words: Photocatalysis, H2O2, Covalent organic framework, Nb2C MXene, S-scheme heterojunction