催化学报 ›› 2016, Vol. 37 ›› Issue (1): 61-72.DOI: 10.1016/S1872-2067(15)60917-2

• 新型多孔催化材料专栏 • 上一篇    下一篇

尺寸可控、高热稳定性有序介孔碳Au催化剂的合成

王帅a, 王杰a, 朱小娟a, 王建强b, Osamu Terasakic, 万颖a   

  1. a 上海师范大学化学系, 资源化学教育部重点实验室, 上海市稀土功能材料重点实验室, 上海200234;
    b 上海应用物理研究所, 上海市同步光源中心, 上海201204;
    c 斯德哥尔摩大学物理、无机和结构化学系, 阿伦尼乌斯实验室, 斯德哥尔摩10691, 瑞典
  • 收稿日期:2015-03-03 修回日期:2015-05-08 出版日期:2015-12-26 发布日期:2015-12-26
  • 通讯作者: 万颖
  • 作者简介:万颖
  • 基金资助:

    国家重点基础研究发展计划(973计划, 2013CB934102); 国家自然科学基金(21322308, 21173149); 教育部创新团队发展计划(PCSIRT-IRT1269); 教育部高等学校博士学科点基金(20123127110004); 上海市科委和教委基金(11JC1409200, DZL123, S30406).

Size-control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework

Shuai Wanga, Jie Wanga, Xiaojuan Zhua, Jianqiang Wangb, Osamu Terasakic, Ying Wana   

  1. a The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
    b Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China;
    c Arrhenius Laboratory, Department of Physical, Inorganic and Structural Chemistry, Stockholm University, Stockholm 10691, Sweden
  • Received:2015-03-03 Revised:2015-05-08 Online:2015-12-26 Published:2015-12-26
  • Supported by:

    This work was supported by the State Key Basic Research Program of China (2013CB934102), the National Natural Science Foundation of China (21322308, 21173149), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT-IRT1269), the Research Fund for the Doctoral Program of Higher Education (20123127110004), and Shanghai Science & Technology and Education Committee (11JC1409200, DZL123, S30406).

摘要:

纳米Au催化剂被认为是具有商业价值的用于醇选择氧化的第二代催化剂.这是因为Au氧化还原电势高,化学稳定性好,可抑制易使Pt族元素中毒的胺等的毒化;其次,对于一些特定选择氧化和还原反应而言,具有较优的反应选择性.目前较多的研究集中在调变Au纳米颗粒与氧化物载体的相互作用,获得协同效应.例如,利用CeO2纳米晶为载体,沉积Au纳米颗粒(约3 nm),使CeO2部分还原为非计量比的催化材料,活化氧并获得高选择氧化性能.碳是相对惰性的载体,与Au相互作用力弱,因此可被用于研究Au纳米颗粒本征催化性能.但负载碳金催化剂在焙烧甚至还原过程中易团聚,且在反应中易流失,可能导致活性下降.利用胶体沉积法可获得介孔碳担载纳米Au催化剂,对葡萄糖选择氧化具有很高的催化活性和选择性.但是,制备中使用的保护剂残留经常被忽略.由于立体效应或电子结构调变作用,保护剂可能影响Au催化剂活性或稳定性.
我们前期建立了反应单体参与的自组装技术合成功能化介孔碳路线,一步在介孔碳骨架中掺杂氧化物纳米催化剂.本文从介孔催化材料的结构出发,设计“镶嵌”在碳骨架中的纳米Au颗粒.采用配位作用辅助表面活性剂自组装技术,以苯酚和甲醛为碳前体,引入含巯基硅烷偶联剂,通过配位作用稳定金离子,获得尺寸可控介孔碳限域纳米Au催化剂.低温炭化中,由于巯基-金的配位作用阻抑金属移动或团聚,高温下聚合物炭化为相对刚性的碳骨架.此时,Au纳米颗粒被相邻介孔孔墙限制.硅烷偶联剂可除去,不影响碳载体,并可产生丰富二级孔道,获得多级孔道介孔碳材料.
X射线衍射和透射电镜结果显示,所合成的催化剂中Au颗粒的尺寸可控,为3-18nm,且具有单分散性,均匀地分散在整个介孔碳骨架中,其含量为1.1-9.0wt%.金碳催化剂具有有序的二维六方介孔结构.能量散射谱(EDX)也证明了催化剂只含有C,O和Au元素,没有S和Si元素的残留.X射线光电子能谱(XPS)结果显示催化剂表面的Au含量远远低于ICP的测试结果,也证明了Au纳米颗粒分布在介孔碳骨架内,同时只含有C,O和Au元素也与EDX相符.X射线近边吸收谱结果表明,随着颗粒尺寸的减小,Au表面电子性质发生改变.N2吸脱附等温线显示,有序介孔碳金催化剂具有典型的第IV型曲线,说明孔径分布范围较窄,主孔道尺寸为3.4-5.7nm.值得注意的是,低压力段吸附量显示明显突跃,暗示其具有一套约为2 nm的次级介孔.所有的催化剂都具有高的比表面积(1269-1743m2/g)和大的孔体积(0.79-1.38cm3/g).Au纳米颗粒具有高的热稳定性,在惰性气氛中,即使在600℃也未见明显聚集长大.
进一步讨论了合成中影响金纳米颗粒尺寸的重要影响因素.(1)巯基含量:通过调节巯基组分的含量,可以调控催化剂中Au纳米颗粒的尺寸(9-18nm).需要强调的是,Au纳米颗粒尺寸与巯基在新合成材料中的浓度有关,当巯基含量在所研究的范围中时(1.55-3.06mmol/g),Au纳米颗粒尺寸仅仅与巯基浓度有关,而与Au浓度无关.(2)硫酸预炭化处理:新合成的材料经过一步硫酸预炭化处理,可以得到尺寸为3 nm的有序介孔碳金催化剂.表征结果证明,经过硫酸预碳化处理,大量表面活性剂被除去,同时聚合物载体发生部分碳化,有助于在后续高温炭化中保护3 nm金颗粒不团聚.尺寸可控、高热稳定性、无配体保护的有序介孔碳负载Au催化剂有望应用在催化和传感器等领域.

关键词: 金纳米颗粒, 尺寸, 碳, 介孔

Abstract:

Simultaneously controlling the size of Au nanoparticles and immobilizing their location to specific active sites while hindering migration and sintering at elevated temperatures is a current challenge within materials chemistry. Typical methods require the use of protecting agents to control the properties of Au nanoparticles and therefore it is difficult to decouple the influence of the protecting agent and the support material. By functionalizing the internal surface area of mesoporous carbon supports with thiol groups and implementing a simple acid extraction step, we are able to design the resulting materials with precise control over the Au nanoparticle size without the need for the presence of any protecting group, whilst simultaneously confining the nanoparticles to within the internal porous network. Monodispersed Au nanoparticles in the absence of protecting agents were encapsulated into ordered mesoporous carbon at various loading levels via a coordination-assisted self-assembly approach. The X-ray diffractograms and transmission electron microscopy micrographs show that the particles have controlled and well-defined diameters between 3 and 18 nm at concentrations between 1.1 and 9.0 wt%. The Au nanoparticles are intercalated into the pore matrix to different degrees depending on the synthesis conditions and are stable after high temperature treatment at 600 ℃. N2 adsorption- desorption isotherms show that the Au functionalized mesoporous carbon catalysts possess high surface areas (1269-1743 m2/g), large pore volumes (0.78-1.38 cm3/g) and interpenetrated, uniform bimodal mesopores with the primary larger mesopore lying in the range of 3.4-5.7 nm and the smaller secondary mesopore having a diameter close to 2 nm. X-ray absorption near extended spectroscopy analysis reveals changes to the electronic properties of the Au nanoparticles as a function of reduced particle size. The predominant factors that significantly determine the end Au nanoparticle size is both the thiol group concentration and subjecting the as-made materials to an additional concentrated sulfuric acid extraction step.

Key words: Gold nanoparticles, Size, Carbon, Mesoporous