催化学报 ›› 2018, Vol. 39 ›› Issue (4): 821-830.DOI: 10.1016/S1872-2067(18)63059-1

• 论文 • 上一篇    下一篇

低温NH3-SCR新型MnOx@TiO2纳米棒核壳结构催化剂的合成及抗SO2性能研究

盛重义a,c, 麻丁仁a, 俞丹青b, 肖香c, 黄冰洁a, 杨柳a, 王圣d   

  1. a 南京师范大学环境学院, 江苏南京 210023;
    b 武汉科技大学化学工程与技术学院, 湖北武汉 430081;
    c 浙江大学苏州工业技术研究院, 江苏苏州 215163;
    d 国电环境保护研究院, 江苏南京 210031
  • 收稿日期:2018-02-19 修回日期:2018-03-12 出版日期:2018-04-18 发布日期:2018-04-08
  • 通讯作者: 杨柳
  • 基金资助:

    国家自然科学基金(51508281,41771498);江苏省高校自然科学研究面上项目(16KJD610001).

Synthesis of novel MnOx@TiO2 core-shell nanorod catalyst for low-temperature NH3-selective catalytic reduction of NOx with enhanced SO2 tolerance

Zhongyi Shenga,c, Dingren Maa, Danqing Yub, Xiang Xiaoc, Bingjie Huanga, Liu Yanga, Sheng Wangd   

  1. a School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China;
    b School of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China;
    c Suzhou Industrial Technology Research Institute of Zhejiang University, Suzhou 215163, Jiangsu, China;
    d State Power Environmental Protection Research Institute, Nanjing 210031, Jiangsu, China
  • Received:2018-02-19 Revised:2018-03-12 Online:2018-04-18 Published:2018-04-08
  • Contact: 10.1016/S1872-2067(18)63059-1
  • Supported by:

    The work was supported by the National Natural Foundation of China (51508281, 41771498) and the Program of Natural Science Research of Jiangsu Higher Education Institutions of China (16KJD610001).

摘要:

氮氧化物(NOx)是造成大气污染的主要来源之一,严重威胁人类的身体健康.选择性催化还原(SCR)技术由于其独特的优势而受到青睐.但SCR催化剂容易受到SO2的侵蚀而失活,使用寿命降低.开发具有抗硫能力强的高活性催化剂已成为脱硝技术研究的热点.核壳结构催化剂由于其独特的外壳结构能有效地减少活性物质与SO2的接触,减少催化剂中毒,延长催化剂的使用寿命.而水热合成法能有效控制催化剂的外形结构,动力学外裹法能将物质均匀分布在被包裹物质的表面,两者结合有利于核壳结构催化剂的合成.
本文采用两步法(水热法+动力学外包裹法)制备的MnOx@TiO2纳米棒核壳结构低温脱硝催化剂具有高活性、高稳定性和优异的N2选择性.此外,与MnOx,TiO2和MnOx/TiO2等纳米材料相比,MnOx@TiO2具有更好的SO2和H2O抗性,表明MnOx@TiO2具备良好的运用前景.采用TEM,HR-TEM,XRD,Raman,BET,XPS,NH3-TPD和H2-TPR等方法对催化剂进行了系统的表征.TEM和HR-TEM结果表明,MnOx@TiO2表现出明显的核壳结构,且TiO2颗粒均匀分布在MnOx纳米棒上.XRD和Raman结果发现MnOx@TiO2中含有MnO2,从而保证了MnOx@TiO2具有良好的脱硝活性.同时,BET,NH3-TPD和H2-TPR等结果表明,MnOx@TiO2具有丰富的中孔结构和路易斯酸位点,以及强氧化还原能力,因而其催化性能提高.根据SO2侵蚀后的XPS结果,MnOx@TiO2与MnOx/TiO2相比,两者中的S元素含量差异小,但前者中的Mn4+降低量远少于后者.表明MnOx@TiO2的核壳结构可以在SO2存在条件下有效地保护活性位点,因而具有更强的SO2抗性.

关键词: 低温选择性催化还原, 核壳结构, 纳米棒, 二氧化硫抗性, 锰氧化物

Abstract:

In this study, a MnOx@TiO2 core-shell catalyst prepared by a two-step method was used for the low-temperature selective catalytic reduction of NOx with NH3. The catalyst exhibits high activity, high stability, and excellent N2 selectivity. Furthermore, it displays better SO2 and H2O tolerance than its MnOx, TiO2, and MnOx/TiO2 counterparts. The prepared catalyst was characterized systematically by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman, BET, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and H2 temperature-programmed reduction analyses. The optimized MnOx@TiO2 catalyst exhibits an obvious core-shell structure, where the TiO2 shell is evenly distributed over the MnOx nanorod core. The catalyst also presents abundant mesopores, Lewis-acid sites, and high redox capability, all of which enhance its catalytic performance. According to the XPS results, the decrease in the number of Mn4+ active centers after SO2 poisoning is significantly lower in MnOx@TiO2 than in MnOx/TiO2. The core-shell structure is hence able to protect the catalytic active sites from H2O and SO2 poisoning.

Key words: Low-temperature selective catalytic reduction, Core-shell, Nanorod, SO2 resistance, MnOx