催化学报 ›› 2021, Vol. 42 ›› Issue (1): 225-234.DOI: 10.1016/S1872-2067(20)63615-4

• 论文 • 上一篇    下一篇

Cr2O3/C@TiO2核壳型复合材料的设计合成及其光催化产氢性能

陈洋a, 冒国兵a, 唐亚文a, 武恒a, 王刚a, 张力b,*(), 刘琪a,#()   

  1. a安徽工程大学机械与汽车工程学院, 安徽芜湖241000
    b南开大学电子信息与光学工程学院, 天津300071
  • 收稿日期:2020-03-19 接受日期:2020-05-04 出版日期:2021-01-18 发布日期:2021-01-18
  • 通讯作者: 张力,刘琪
  • 基金资助:
    安徽省对外科技合作项目(1704e1002212);安徽省高校自然科学研究项目重点项目(KJ2019A0157);安徽省人才工程(Z175050020001);天津市自然科学基金.(15JCYBJC21200)

Synthesis of core-shell nanostructured Cr2O3/C@TiO2 for photocatalytic hydrogen production

Yang Chena, Guobing Maoa, Yawen Tanga, Heng Wua, Gang Wanga, Li Zhangb,*(), Qi Liua,#()   

  1. aDepartment of materials science and Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
    bInstitute of Photoelectronics Thin Film Devices and Technique of Nankai University, Nankai University, Tianjin 300071, China
  • Received:2020-03-19 Accepted:2020-05-04 Online:2021-01-18 Published:2021-01-18
  • Contact: Li Zhang,Qi Liu
  • About author:#Tel: +86-553-2871738; E-mail: modieer_67@ahpu.edu.cn
    *Tel: +86-22-23500197; E-mail: lzhang@nankai.edu.cn;
  • Supported by:
    International Science and Technology Cooperation Project of Anhui Province(1704e1002212);the Key Project of Anhui Provincial Department of Education(KJ2019A0157);Talent Project of Anhui Province(Z175050020001);Tianjin Natural Science Foundation(15JCYBJC21200)

摘要:

随着社会经济的快速发展, 能源危机和环境污染问题成为世界各国关注的焦点. 通过光催化剂将太阳能用于污染物降解、分解水产氢、CO2还原及有机物合成等领域, 是解决上述问题的理想途径. 过渡金属氧化物TiO2因其稳定性高、催化活性好、制备简单等优点, 被认为是最理想的光催化材料. 然而, TiO2带隙较宽、光响应范围窄、光量子效率低等缺点限制了其实际应用. 将碳或Cr2O3与TiO2结合形成复合结构已被证明可以有效提升其光催化性能. 另一方面, 金属离子的掺杂可以有效提高氧化钛的可见光响应.
本文利用具有高比表面积的金属有机骨架材料MIL-101(Cr)纳米材料作为模板、镉源和碳源, 首先在MIL-101(Cr)表面可控生长TiO2纳米颗粒, 获得MIL-101(Cr)@TiO2复合结构;然后在氮气保护下碳化形成Cr2O3/C@TiO2核壳型复合材料. 碳化后, 制备的复合材料具有模板的八面体形貌和高比表面积, MIL-101(Cr)中的Cr元素一部分会形成Cr2O3, 一部分会掺杂到TiO2中, 使得TiO2的吸收边红移. 此外, Cr2O3/C@TiO2中的C有利于光的吸收和载流子的分离. 这种独特的纳米结构赋予Cr2O3/C@TiO2复合材料优异的光催化性能. 在300 W氙灯照射下, 该复合材料光解水产氢的速率为446 μmol h-1 g-1, 约为纯TiO2的4倍. 在可见光照射下, Cr2O3/C@TiO2分解水产氢的速率为25.5 μmol h-1 g-1. 将获得的粉体催化剂制备成光电极发现, Cr2O3/C@TiO2在全幅光照射下的光电流密度在0.4 V (vs.Ag/AgCl)下达到2.3 mA/cm2, 约为纯TiO2的3.5倍. Cr2O3/C@TiO2光催化产氢活性的提高一方面是由于Cr掺杂到TiO2中使得其具有可见光响应, 另一方面MIL-101碳化获得的Cr2O3/C有效促进了光生载流子的分离.

关键词: 核壳结构, Cr2O3, 二氧化钛, 产氢, 光催化剂

Abstract:

In this study, the Cr2O3/C@TiO2 composite was synthesized via the calcination of yolk-shell MIL-101@TiO2. The composite presented core-shell structure, where Cr-doped TiO2 and Cr2O3/C were the shell and core, respectively. The introduction of Cr3+ and Cr2O3/C, which were derived from the calcination of MIL-101, in the composite enhanced its visible light absorbing ability and lowered the recombination rate of the photogenerated electrons and holes. The large surface area of the Cr2O3/C@TiO2 composite provided numerous active sites for the photoreduction reaction. Consequently, the photocatalytic performance of the composite for the production of H2 was better than that of pure TiO2. Under the irradiation of a 300 W Xe arc lamp, the H2 production rate of the Cr2O3/C@TiO2 composite that was calcined at 500 °C was 446 μmol h-1 g-1, which was approximately four times higher than that of pristine TiO2 nanoparticles. Moreover, the composite exhibited the high H2 production rate of 25.5 μmol h-1 g-1 under visible light irradiation (λ > 420 nm). The high photocatalytic performance of Cr2O3/C@TiO2 could be attributed to its wide visible light photoresponse range and efficient separation of photogenerated electrons and holes. This paper offers some insights into the design of a novel efficient photocatalyst for water-splitting applications.

Key words: Core-shell structure, Cr2O3, TiO2, Hydrogen generation, Photocatalyst