催化学报 ›› 2019, Vol. 40 ›› Issue (1): 43-51.DOI: 10.1016/S1872-2067(18)63175-4

• 论文 • 上一篇    下一篇

可逆氧催化性能提升的FeS2/NiS2纳米复合物的合成及其在锌空电池中的应用

靳晶, 殷杰, 刘瀚文, 席聘贤   

  1. 兰州大学化学化工学院, 甘肃省有色金属化学与资源利用重点实验室, 应用有机化学国家重点实验室, 甘肃兰州 730000
  • 收稿日期:2018-09-07 修回日期:2018-10-08 出版日期:2019-01-18 发布日期:2018-11-09
  • 通讯作者: 席聘贤
  • 基金资助:

    国家自然科学基金(21571089,21503102,21503102);中央高校基本科研业务费(lzujbky2016-k02,lzujbky2017-it42,lzujbky2018-k08).

Synthesis of silk-like FeS2/NiS2 hybrid nanocrystals with improved reversible oxygen catalytic performance in a Zn-air battery

Jing Jin, Jie Yin, Hanwen Liu, Pinxian Xi   

  1. State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
  • Received:2018-09-07 Revised:2018-10-08 Online:2019-01-18 Published:2018-11-09
  • Contact: 10.1016/S1872-2067(18)63175-4
  • Supported by:

    This work was supported by the National Basic Research Program of China (21571089, 21503102, 51571125), and the Fundamental Research Funds for the Central Universities (lzujbky-2016-k02, lzujbky-2018-k08, lzujbky-2017-it42).

摘要:

当今世界环境与能源问题仍广受关注,我们所依赖的燃料电池大部分依然是不可再生的能源,如煤、石油、天然气等化石燃料,且在使用过程中产生大量的有毒有害气体,造成酸雨、温室效应等不良后果,对环境造成严重的影响.因此,寻找一种可替代化石燃料、环境友好且可再生的新能源燃料意义重大.新型高效稳定的可逆氧催化材料在可再生能源,如锌空电池的应用中具有重要作用,而这种电池是一种可再生的新型能源,对环境友好.因此,本文设计了一种具有优良的可逆氧催化性能的材料.
首先通过水热法合成NiFe2O4前驱体,然后在管式炉中对其进行高温硫化,最后采用超声辅助液相剥离法制备了丝状界面FeS2/NiS2复合纳米材料.所合成的催化剂具有独特的丝状形貌和界面,因而具有优良的双功能电催化性能和可逆氧催化性能.对于氧析出反应(OER),该材料具有较低的过电势,仅需233mV过电势即可实现析氧电流10mA cm-2,该性能优于大多数报道的NiFe催化材料的性能;同时,该材料对氧还原反应(ORR)也具有很好的催化效果,其中ORR反应的起始电压为911mV,半波电位为640mV.OER和ORR催化活性结果表明,该材料具有优良的可逆氧催化性能,其△E值为0.823V,优于贵金属催化材料.基于此,我们设计组装了液态和固态的锌空电池,并进行一系列的测试.结果表明,该系列电池在测试条件下均具有较高的开路电压和优良的充放电能力,并且在固态的锌空电池上表现出很好的可弯曲性,使其成为一种非常好的可折叠柔性固态锌空电池,具有更广泛的应用前景.这也为传统过渡金属催化材料的设计合成提供了新思路:在传统过渡金属的基础上,可通过更加新颖的合成方法使其具有独特的形貌,乃至非常好的双功能催化性和可逆氧催化性能,从而推动锌空电池的发展.另外,本文所设计的固态柔性锌空电池模型也可为相关设计应用提供参考.

关键词: 丝状, FeS2/NiS2, 界面, 可逆氧催化, 锌空电池

Abstract:

The development of highly active and stable reversible oxygen electrocatalysts is crucial for improving the efficiency of metal-air battery devices. Herein, an efficient liquid exfoliation strategy was designed for producing silk-like FeS2/NiS2 hybrid nanocrystals with enhanced reversible oxygen catalytic performance that displayed excellent properties for Zn-air batteries. Because of the unique silk-like morphology and interface nanocrystal structure, they can catalyze the oxygen evolution reaction (OER) efficiently with a low overpotential of 233 mV at j=10 mA cm-2. This is an improvement from the recently reported catalysts in 1.0 M KOH. Meanwhile, the oxygen reduction reaction (ORR) activity of the silk-like FeS2/NiS2 hybrid nanocrystals showed an onset potential of 911 mV and a half-wave potential of 640 mV. In addition, the reversible oxygen electrode activity of the silk-like FeS2/NiS2 hybrid nanocrystals was calculated to be 0.823 V, based on the potential of the OER and ORR. Further, the homemade rechargeable Zn-air batteries using FeS2/NiS2 hybrid nanocrystals as the air-cathode displayed a high open-circuit voltage of 1.25 V for more than 17 h and an excellent rechargeable performance for 25 h. The solid Zn-air batteries exhibited an excellent rechargeable performance for 15 h. This study provided a new method for designing interface nanocrystals with a unique morphology for efficient multifunctional electrocatalysts in electrochemical reactions and renewable energy devices.

Key words: Silk-like, FeS2/NiS2, Interface nanocrystal, Reversible oxygen electrocatalyst, Zn-air battery