催化学报 ›› 2019, Vol. 40 ›› Issue (10): 1525-1533.DOI: 10.1016/S1872-2067(19)63415-7

• 论文 • 上一篇    下一篇

γ-MnOOH低温催化降解异味气体正己醛:锰缺陷的影响

随山红a,b, 张彭义a,b, 张惠玉a,b, 曹冉冉a,b   

  1. a 清华大学环境学院, 环境模拟与污染控制国家重点联合实验室, 北京 100084;
    b 室内空气质量评价与控制北京市重点实验室, 北京 100084
  • 收稿日期:2019-04-22 修回日期:2019-05-25 出版日期:2019-10-18 发布日期:2019-08-26
  • 通讯作者: 张彭义
  • 基金资助:
    国家自然科学基金(21677083);苏州-清华创新引领行动专项(2016SZ0104).

Low-temperature catalytic degradation of the odorous pollutant hexanal by γ-MnOOH: The effect of Mn vacancies

Shanhong Suia,b, Pengyi Zhanga,b, Huiyu Zhanga,b, Ranran Caoa,b   

  1. a State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China;
    b Beijing Key Laboratory for Indoor Air Quality Evaluation and Control, Beijing 100084, China
  • Received:2019-04-22 Revised:2019-05-25 Online:2019-10-18 Published:2019-08-26
  • Supported by:
    This work was supported by National Natural Science Foundation of China (21677083) and Suzhou-Tsinghua Innovation Guiding Program (2016SZ0104).

摘要: 正己醛是室内常见的挥发性有机物,主要由板材类家具等释放,由于其嗅味阈值很低、检出率高,是引起室内异味的主要成分之一,目前对正己醛的催化去除研究很少.γ-MnOOH是常见的羟基锰氧化物,常作为合成其他锰氧化物的前驱体,在超级电容、离子电池、催化等领域有广泛的应用前景,但将其作为气相反应催化剂的研究较少,关于γ-MnOOH中锰缺陷含量对其催化性能的影响未有报道.本文通过两种水热反应体系制备了结晶性良好的γ-MnOOH催化剂,通过在高锰酸钾-乙二醇制备体系中添加一定量的硫酸制备了高锰缺陷含量的γ-MnOOH催化材料,通过正己醛的动态催化氧化反应体系对不同样品的催化性能进行了评价.结果表明,高锰缺陷含量的γ-MnOOH对正己醛具有很高的催化活性,85℃下可以将浓度为15ppm、相对湿度50%、质量空速(GHSV)为240L/(g·h)的正己醛完全去除,在160℃下可将正己醛完全转化为CO2.
通过X射线衍射、扫描电镜、透射和高分辨透射电镜、N2吸附-脱附,拉曼光谱(Raman)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)、氧气程序升温脱附(O2-TPD)和电子自旋共振谱(ESR)对材料的结构、形貌及物理化学性质等进行了表征,并通过热脱附-气相色谱/质谱联用(ATD-GC/MS)和原位红外光谱分别对正己醛催化氧化反应中的气相产物、催化剂表面的中间物种进行了鉴别.材料结构和形貌表征结果表明,高锰缺陷含量的γ-MnOOH结晶性相对较差,表面晶格条纹畸变及化学键无序性很大,锰的平均价态较高;H2-TPR和O2-TPD的测试结果表明,添加硫酸制备的催化剂起始还原温度低,还原过程连续性及晶格氧的迁移转化能力增强,表面吸附氧物种含量增大;ESR的测试结果也表明,该材料活化氧气产生超氧自由基(·O2-)的能力更强,这些都有利于提高催化剂的催化活性.ATD-GC/MS的表征结果表明,当正己醛未完全分解时,正戊醛和正丁醛是最主要的气相产物;通过原位红外对催化过程中催化剂表面的中间物种进行测定,检测到醛类和羧酸类的吸收峰,由此推测正己醛的催化氧化途径为正己醛氧化为己酸,脱羧并氧化生成正戊醛,后者再被氧化脱羧,最终正己醛被逐级完全降解.

关键词: &gamma, -MnOOH, 锰缺陷, 己醛降解, 室内空气, 催化

Abstract: Hexanal is a typical indoor odorant from wood-based products, which induces discomfort and irritation to human beings. The removal of hexanal has rarely been investigated. In this study, we found that the amount of Mn vacancies in γ-MnOOH significantly affects its catalytic activity toward hexanal degradation and transformation into CO2. The as-synthesized Mn vacancy-rich γ-MnOOH exhibited high efficiency toward hexanal removal, achieving 100% degradation of 15 ppm hexanal at 85℃ and complete transformation into CO2 at 160℃ under the gas hourly space velocity of 240 L/(g·h); its activity could be completely regenerated by in-situ heat treatment at 180℃. Moreover, it was found that the degradation of hexanal occurred in a stepwise manner, i.e., losing one CH2 unit per step. Electron spinning resonance studies detected strong indicative signals for the presence of the superoxide anion radical (·O2-) on Mn-vacancy-rich γ-MnOOH, which may act as active oxygen species for the hexanal degradation. Understanding the role of Mn-vacancy and the mechanism of hexanal degradation by γ-MnOOH are essential for developing efficient oxide catalysts for volatile organic compounds besides hexanal.

Key words: γ-MnOOH, Manganese vacancy, Hexanal degradation, Indoor air, Catalysis