催化学报 ›› 2020, Vol. 41 ›› Issue (3): 524-532.DOI: 10.1016/S1872-2067(19)63517-5

• 论文 • 上一篇    

单原子催化剂活化氢气:Pt1/WOx催化氢解反应

周茂祥a,c, 杨曼a,c, 杨小峰a, 赵晓晨a, 孙磊d, 邓伟侨d, 王爱琴a,b, 李隽e, 张涛a,b   

  1. a 中国科学院大连化学物理研究所航天催化材料重点实验室, 辽宁大连 116023;
    b 中国科学院大连化学物理研究所催化基础重点实验室, 辽宁大连 116023;
    c 中国科学院大学, 北京 100084;
    d 中国科学院大连化学物理研究所 分子反应动力学国家重点实验室, 辽宁大连 116023;
    e 清华大学化学系有机光电子与分子工程教育部重点实验室, 北京 100084
  • 收稿日期:2019-08-20 修回日期:2019-09-20 出版日期:2020-03-18 发布日期:2019-11-19
  • 通讯作者: 杨小峰, 王爱琴
  • 基金资助:
    国家重点研发计划(2018YFB1501602,2016YFA0202801);国家自然科学基金(21690080,21690084,21673228,21721004,21776269,和21606227);中国科学院战略性先导科技专项(XDB17020100);中国科学院洁净能源创新研究院(DNL180303).

On the mechanism of H2 activation over single-atom catalyst: An understanding of Pt1/WOx in the hydrogenolysis reaction

Maoxiang Zhoua,c, Man Yanga,c, Xiaofeng Yanga, Xiaochen Zhaoa, Lei Sund, Weiqiao Dengd, Aiqin Wanga,b, Jun Lie, Tao Zhanga,b   

  1. a CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    c University of Chinese Academy of Sciences, Beijing 100049, China;
    d State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    e Department of Chemistry and Key Laboratory of Organic Optoelectronics&Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
  • Received:2019-08-20 Revised:2019-09-20 Online:2020-03-18 Published:2019-11-19
  • Supported by:
    This work was supported by the National Key R&D Program of China (2018YFB1501602 and 2016YFA0202801), the National Natural Science Foundation of China (21690080, 21690084, 21673228, 21721004, 21776269, and 21606227), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100), and Dalian National Laboratory for Clean Energy (DNL180303).

摘要: 单原子催化剂具有独特的结构位点,能最大化利用贵金属原子,在一系列化学转化反应中具有优异的活性和选择性.但单原子的稳定性是单原子催化剂应用的一个挑战,特别是还原气氛下单原子的稳定性,这极大地限制了单原子催化剂在加氢、脱氢和氢解反应中的应用.理解还原气氛下单原子的稳定机制和单原子催化剂活化氢气的反应机理对于扩大单原子催化剂的应用非常重要.Pt/WOx(2 < x < 3)是一种典型的金属-载体强相互作用体系,在甘油氢解制1,3-丙二醇等一系列含氢反应中具有优异的活性和选择性.但原子层面的催化反应机理,如Pt单原子在表面的位置、Pt单原子的稳定机理以及氢气在单原子上活化产生原位Brønsted酸的机制仍不清楚.
在本研究中,我们结合密度泛函理论(DFT)和实验表征研究了WOx负载Pt、Pd、Au三种单原子的稳定性和解离氢气的活性.DFT计算结果表明,在还原气氛下Pt单原子能促进氧化钨表面形成桥式氧空位.WOx表面的氧空位对于Pt单原子的稳定非常重要,氧空位通过转移部分电子给Pt,使Pt单原子带部分负电从而高效地稳定Pt单原子.不同于带正电单原子的非均相解离氢气,带部分负电的Pt单原子保持一定的金属性,能类似金属表面均相解离H2产生金属氢物种(Pt-H).同时Pt解离的H原子能容易地扩散到氧化钨载体上形成原位Brønsted酸,从而使Pt1/WOx催化剂具有双功能催化性质.考察了Pt、Pd、Au三种单原子在WOx(001)表面的稳定性,三种单原子的稳定性顺序为Pt>Pd>Au.氢气能在Pd和WOx界面非均相解离,而Au/WOx不能活化、解离氢气.
我们进一步采用实验表征验证了DFT理论计算的结果.实验合成了WOx负载的Pt、Pd、Au三种催化剂,X射线衍射(XRD)和透射电子显微镜(TEM)结果表明,Pt能在WOx表面原子级分散和稳定,而Pd在WOx表面形成较小的纳米颗粒,Au形成较大的纳米颗粒.采用氢气化学吸附研究了三种催化剂对氢气的活化能力,结果表明三种催化剂的氢气活化能力顺序为Pt/WOx(137μmol/g-Pt)> Pd/WOx(43μmol/g-Pd)>> Au/WOx(4μmol/g-Au).将三种催化剂用于甘油选择性氢解制备1,3-丙二醇的反应中,只有Pt/WOx催化剂对甘油氢解具有优异的活性和选择性.从而实验证实了氢气气氛下原位产生的Brønsted酸具有关键作用和Pt1/WOx催化剂具有双功能催化性质.
我们的研究不仅解释了还原气氛下金属单原子在氧化物表面的稳定机理,而且对单原子催化剂活化解离氢气提供了新的认识.

 

关键词: 单原子催化剂, 铂, 密度泛函理论, 氢解离, 氧化钨

Abstract: Owing to the atomic dispersion of active sites via electronic interaction with supports, single-atom catalysts (SACs) grant maximum utilization of metals with unique activity and/or selectivity in various catalytic processes. However, the stability of single atoms under oxygen-poor conditions, and the mechanism of hydrogen activation on SACs remain elusive. Here, through a combination of theoretical calculation and experiments, the stabilization of metal single atoms on tungsten oxide and its catalytic properties in H2 activation are investigated. Our calculation results indicate that the oxygen defects on the WO3(001) surface play a vital role in the stabilization of single metal atoms through electron transfer from the oxygen vacancies to the metal atoms. In comparison with Pd and Au, Pt single atoms possess greatly enhanced stability on the WOx(001) surface and carry negative charge, facilitating the dissociation of H2 to metal-H species (Hδ-) via homolytic cleavage of H2 similar to that occurring in metal ensembles. More importantly, the facile diffusion of Pt-H to the WOx support results in the formation of Brønsted acid sites (Hδ+), imparting bifunctionality to Pt1/WOx. The dynamic formation of Brønsted acid sites in hydrogen atmosphere proved to be the key to chemoselective hydrogenolysis of glycerol into 1,3-propanediol, which was experimentally demonstrated on the Pt1/WOx catalyst.

Key words: Single-atom catalyst, Pt, Density function theory, Hydrogen dissociation, Tungsten oxide

中图分类号: