催化学报 ›› 2020, Vol. 41 ›› Issue (3): 514-523.DOI: 10.1016/S1872-2067(19)63497-2

• 论文 • 上一篇    下一篇

Co-MOF作为电子供体用于提高g-C3N4纳米片的可见光催化还原CO2性能

陈秋雨a, 李思佳a, 许宏一a, 王国凤a, 曲阳a, 朱培芬b, 王定胜c   

  1. a 黑龙江大学化学与材料科学学院, 功能无机材料化学教育部重点实验室, 黑龙江哈尔滨 150080, 中国;
    b 塔尔萨大学物理与工程物理系, 塔尔萨 74104, 美国;
    c 清华大学化学系, 北京 100084, 中国
  • 收稿日期:2019-07-15 修回日期:2019-08-23 出版日期:2020-03-18 发布日期:2019-11-19
  • 通讯作者: 王国凤, 曲阳, 朱培芬
  • 基金资助:
    国家自然科学基金(21871079,21501052);黑龙江省自然科学基金优秀青年项目(YQ2019B006).

Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction

Qiuyu Chena, Sijia Lia, Hongyi Xua, Guofeng Wanga, Yang Qua, Peifen Zhub, Dingsheng Wangc   

  1. a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China;
    b Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104, USA;
    c Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2019-07-15 Revised:2019-08-23 Online:2020-03-18 Published:2019-11-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21871079,21501052), and the Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province (YQ2019B006).

摘要: 作为温室效应的主要气体CO2浓度持续上升,已经成为全球环境问题.将CO2光催化还原成可再生能源不仅可以解决CO2带来的温室效应,而且可以将太阳能转化为燃料物质而取代传统意义上的化石能源.实际上光催化的研究可以追溯到1979年,自从Inoue首次报道了光催化CO2和水制取甲酸、甲烷等有机物,人们一直在努力开发高效的CO2转化光催化剂.近年来,随着光催化技术的快速稳定发展,各种半导体光催化剂,如Zn2GeO4,CdS,Fe3O4,g-C3N4和SrTiO3等,已被开发用于光催化还原二氧化碳.在这些半导体中,有的材料具有较大的带隙导致较低的可见光活性,有的材料具有毒性引起额外的环境问题.因此,寻求具有适度带隙且环境友好的半导体材料是解决全球变暖问题的关键.
近年来,g-C3N4因其带隙(约2.7 eV)较窄,具有一定的可见光吸收性能,无污染,以及化学和热稳定性良好等特点,被视为理想的可见光响应光催化材料之一.但是,g-C3N4光吸收有限、光生电子空穴复合率较高等缺点严重限制了其光催化活性.为了进一步提高g-C3N4的CO2可见光催化还原活性,国内外研究者开发了许多方法来提高电荷分离效率,进而提高g-C3N4光催化剂的总体活性.在这些策略中,将g-C3N4与具有合适导带位置的其他材料偶联以促进电子空穴分离是提高光催化性能的有效方法之一.由于Co-MOF具有较窄的带隙且导带位置与g-C3N4匹配,我们选择Co-MOF与g-C3N4复合来克服g-C3N4的缺点,进而达到提高其光催化活性的目的.
作为电子供体的Co-MOF能够将最低未占分子轨道(LUMO)上的光生电子转移到g-C3N4的导带以促进电荷分离,同时水被g-C3N4价带上的空穴氧化,最终生成氧气,从而提高光催化还原CO2的性能.制备的Co-MOF/g-C3N4纳米复合材料在可见光照射下具有优异的光催化还原CO2性能,约为纯g-C3N4的光催化活性的2倍.一系列分析表明,Co-MOF的引入不仅拓宽了可见光的吸收范围,而且促进了电荷分离,有利于提高g-C3N4的光催化活性.特别是在590 nm单波长照射下进行的羟基自由基实验进一步证明了Co-MOF的LUMO上的光生电子可以转移到g-C3N4.该研究结果为基于g-C3N4的光催化体系的合理构建提供了新思路.

关键词: Co-MOF, g-C3N4纳米片, 电荷分离, 可见光活性, 光催化还原二氧化碳

Abstract: A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride (g-C3N4) nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework (MOF) is proposed in this study. Specifically, Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital (LUMO) to the conduction band of g-C3N4 to facilitate charge separation. As expected, the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities. The CO production rate of 6.75 µmol g-1 h-1 and CH4 evolution rate of 5.47 µmol g-1 h-1 are obtained, which are approximately 2 times those obtained with the original g-C3N4 under the same conditions. Based on a series of analyses, it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation, which improves the photocatalytic activity of g-C3N4 to a higher level. In particular, the hydroxyl radical (·OH) experiment was operated under 590 nm (single-wavelength) irradiation, which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4. This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.

Key words: Co-MOF, g-C3N4 nanosheets, Charge separation, Visible-light photoactivity, Photocatalytic CO2 conversion