催化学报 ›› 2020, Vol. 41 ›› Issue (4): 642-671.DOI: 10.1016/S1872-2067(19)63469-8

• 综述 • 上一篇    下一篇

光催化分解水制氢反应中助催化剂的作用及机理

肖楠a,b, 李松松b, 李旭力b, 戈磊a,b, 高旸钦b, 李宁b   

  1. a 中国石油大学(北京)重质油国家重点实验室, 新能源与材料学院, 北京 102249;
    b 中国石油大学(北京)新能源与材料学院, 材料科学与工程系, 北京1022449
  • 收稿日期:2019-09-26 修回日期:2019-10-17 出版日期:2020-04-18 发布日期:2019-12-12
  • 通讯作者: 戈磊
  • 基金资助:
    国家自然科学基金(51572295,21273285,21003157);北京新星计划(2008B76);中国石油大学(北京)科学基金(KYJJ2012-06-20,2462016YXBS05).

The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen

Nan Xiaoa,b, Songsong Lib, Xuli Lib, Lei Gea,b, Yangqin Gaob, Ning Lib   

  1. a State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China;
    b Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
  • Received:2019-09-26 Revised:2019-10-17 Online:2020-04-18 Published:2019-12-12
  • Supported by:
    This work was financially supported by the National Natural Science Foundation of China (51572295, 21273285 and 21003157), Beijing Nova Program (2008B76), and Science Foundation of China University of Petroleum, Beijing (KYJJ2012-06-20 and 2462016YXBS05).

摘要: 近年来,随着一次能源过度消耗所带来的能源和环境问题日益突出,开发廉价、可持续的清洁能源备受关注.光催化分解水制氢可利用太阳能普遍率高和几乎免费等特点制取燃烧热值高、燃烧产物无污染的氢气能源.自从1972年日本的Fujishima教授和Honda教授首次发现TiO2单晶电极光催化分解水可以产生氢气以来,光催化制氢被认为是实现可持续制氢最有潜力的方法之一.有效地将太阳能转换为化学能的关键是设计高效的电荷分离和运输结构.然而,现有的大多数半导体光催化剂因缺少活性位点、光生载流子易复合等缺点而无法达到较高的转换效率.因此,如何提高半导体光催化产氢的转换效率是现阶段面对的重要问题.在众多解决方法中,助催化剂的引入可以为光催化制氢反应增加活性位点,促进光生载流子的有效分离,进而有效地提高半导体光催化产氢速率.本文总结了多种不同类型的助催化剂应用于光催化产氢研究的最新进展,详细讨论了助催化剂在增强光吸收、提供活性位点、增加催化剂稳定性和促进电荷分离等方面的作用,阐明了助催化剂在光催化分解水制氢中的反应机理,同时还提出了光催化制氢的未来研究和预测.
本文将助催化剂分为以下几种类别进行讨论:(1)单一助催化剂,包括金属/合金、金属氧化物/氢氧化物、金属磷化物、金属硫化物、碳基材料等助催化剂材料;(2)双助催化剂;(3) Z-Scheme助催化剂;(4) MOFs助催化剂.近年来,助催化剂材料在光催化产氢中应用的发展趋势从当初价格昂贵的贵金属趋于价格相对低廉的非贵金属,从单一体系趋于更复杂的体系.虽然现阶段关于助催化剂与基底之间的匹配还需要进一步研究,但我们相信随着技术的发展,这些问题都可以迎刃而解.希望在不久的将来,可以精确设计和构建出具有高效光催化产氢活性的催化剂体系,开发出更多新的可再生清洁能源,从而缓解能源紧缺和环境恶化等棘手问题.

关键词: 助催化剂, 光催化, 析氢, 电荷分离, 分解水

Abstract: Photocatalytic hydrogen (H2) evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renewable energy. The key to efficient conversion of solar-chemical energy is the design of an efficient structure for high charge separation and transportation. Therefore, cocatalysts are necessary in boosting photocatalytic H2 evolution. To date, semiconductor photocatalysts have been modified by various cocatalysts due to the extended light harvest, enhanced charge carrier separation efficiency and improved stability. This review focuses on recent developments of cocatalysts in photocatalytic H2 evolution, the roles and mechanism of the cocatalysts are discussed in detail. The cocatalysts can be divided into the following categories:metal/alloy cocatalysts, metal phosphides cocatalysts, metal oxide/hydroxide cocatalysts, carbon-based cocatalysts, dual cocatalysts, Z-scheme cocatalysts and MOFs cocatalysts. The future research and forecast for photocatalytic hydrogen generation are also suggested.

Key words: Cocatalysts, Photocatalytsts, Hydrogen evolution, Charge separation, Water splitting