催化学报 ›› 2020, Vol. 41 ›› Issue (7): 1081-1090.DOI: 10.1016/S1872-2067(20)63570-7

• 论文 • 上一篇    下一篇

超高稳定性的等级孔碳负载高分散铜基选择性加氢催化剂

胡念a, 李小云b, 刘思明a, 王朝a, 何小可a, 侯月新a, 王宇翔a, 邓兆a, 陈丽华a, 苏宝连a,c,d   

  1. a 武汉理工大学材料复合新技术国家重点实验室, 湖北武汉 430070, 中国;
    b 武汉理工大学硅酸盐建筑材料国家重点实验室, 湖北武汉 430070, 中国;
    c 那慕尔大学无机材料化学实验室, 比利时;
    d 剑桥大学克莱尔霍学院, 英国
  • 收稿日期:2019-11-26 出版日期:2020-07-18 发布日期:2020-04-18
  • 通讯作者: 王朝, 陈丽华, 苏宝连
  • 基金资助:
    教育部长江学者创新团队发展计划(IRT_15R52);国家自然科学基金(21902122,21671155,U1663225,21805216);湖北省技术创新专项重大项目(2018AAA012);湖北省杰出青年基金(2018CFA054);中国博士后科研基金(2019M652723);中央高校基本科研业务费资助(2019IVA116).

Enhanced stability of highly-dispersed copper catalyst supported by hierarchically porous carbon for long term selective hydrogenation

Nian Hua, Xiao-Yun Lib, Si-Ming Liua, Zhao Wanga, Xiao-Ke Hea, Yue-Xin Houa, Yu-Xiang Wanga, Zhao Denga, Li-Hua Chena, Bao-Lian Sua,c,d   

  1. a Laboratory of Living Materials, the State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China;
    b State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China;
    c Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, B-5000 Namur, Belgium;
    d Clare Hall, University of Cambridge, Cambridge CB3 9AL
  • Received:2019-11-26 Online:2020-07-18 Published:2020-04-18
  • Supported by:
    This work was supported by Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) of the Chinese Ministry of Education. B. L. Su acknowledges the Chinese Ministry of Education for a “Changjiang Chaire Professor” position and a Clare Hall Life Membership, University of Cambridge. L. H. Chen acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work was also financially supported by the National Natural Science Foundation of China (21671155, U1663225, 21902122, 21805216), Major programs of technical innovation in Hubei (2018AAA012), Hubei Provincial Natural Science Foundation (2018CFA054), Postdoctoral Science Foundation of China (2019M652723), and the Fundamental Research Funds for the Central Universities (2019IVA116).

摘要: 负载型Pd,Pt,Au等贵金属催化剂由于具有较高活性而被广泛应用于选择性加氢催化领域,但资源稀缺、价格昂贵等问题严重制约了其在催化领域的长远发展.目前大量研究结果表明,非贵金属催化剂也具有较高的选择性催化加氢能力,在已被报道的非贵金属加氢催化剂中,铜基催化剂由于在选择性加氢反应中表现出较高加氢选择性和活性引起了人们的广泛关注.然而,早期研究的负载型铜基催化剂普遍存在催化稳定性较低的问题,所以提高铜基催化剂的使用寿命成为了问题关键.本文以铜基有机金属框架HKUST-1作为合成目标催化剂的前驱体,首先探究了水热合成条件对HKUST-1合成结构完整性及结晶度的影响,再通过精确调控HKUST-1的原位碳化过程,利用金属有机框架高温分解自还原行为,成功制备出了等级孔碳负载的高分散铜基催化剂,并将所制备的催化剂应用于1,3-丁二烯选择性加氢反应中.扫描电子显微镜、高分辨透射电子显微镜、X射线衍射、氮气吸脱附、傅里叶红外吸收光谱、X射线光电子能谱等技术用来表征了碳化前后催化剂载体结构的变化,铜粒子尺寸、价态及其在载体中分布的变化.文中也深入探究了以上因素对催化剂选择性催化加氢性能的影响.研究表明:120℃水热合成18 h能获得尺寸在15 μm左右,结晶度高且形貌规整的HKUST-1前驱体.随后通过合理地控制金属有机框架分解过程,可实现对碳载体的等级孔结构和活性铜纳米粒子的分散程度的精确调控,获得高效等级孔载体结构和高分散铜位点的催化剂.不仅如此,通过一步碳化自还原HKUST-1制备的等级孔碳负载Cu的催化性能表现出对碳化温度高度的关联性.其催化活性随碳化处理温度的升高呈现先增强后减弱的趋势,但所有获得的催化剂对单烯烃都具有很高的选择性(>98%).特别地,本文发现在600℃碳化合成的催化剂在低温75℃反应可实现对1,3-丁二烯的100%转化,对丁烯的选择性为100%.同时,该催化剂在恒温75℃下持续反应120 h以上,其对丁二烯转化率和对丁烯选择性依然保持100%,表现出了超高的催化稳定性和潜在的商用价值.本文展示了通过简单地调控金属有机骨架的碳化过程是获得具有优异选择性催化加氢性能的铜基催化剂的有效途径.

关键词: 等级孔结构, 催化剂, 碳载铜, 选择性加氢, 金属有机骨架

Abstract: Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction; however, achieving further high catalytic stability is very difficult. In this work, the carbonization process of Cu-based organic frameworks was explored for the synthesis of highly-dispersed Cu supported by hierarchically porous carbon with high catalytic performance for selective hydrogenation of 1,3-butadiene. The porous hierarchy of carbon support and the dispersion of copper nanoparticles can be precisely tuned by controlling the carbonization process. The resultant catalyst carbonized at 600 ℃ exhibits a rather low reaction temperature at 75 ℃ for 100% butadiene conversion with 100% selectivity to butenes, due to its reasonable porous hierarchy and highly-dispersed copper sites. More importantly, unprecedentedly stability of the corresponding Cu catalyst was firstly observed for selective 1,3-butadiene hydrogenation, with both 100% butadiene conversion and 100% butenes selectivity over 120 h of reaction at 75 ℃. This study verifies that a simply control the carbonization process of metal organic frameworks can be an effective way to obtain Cu-based catalysts with superior catalytic performance for selective hydrogenation reaction.

Key words: Hierarchically porous structure, Catalyst, Cu/C, Selective hydrogenation, Metal organic frameworks