催化学报 ›› 2021, Vol. 42 ›› Issue (8): 1287-1296.DOI: 10.1016/S1872-2067(20)63740-8
郭成英a, 史艳梅a, 卢思宇c, 于一夫a,*(), 张兵a,b,#(
)
收稿日期:
2020-09-11
接受日期:
2020-09-11
出版日期:
2021-08-18
发布日期:
2020-12-10
通讯作者:
于一夫,张兵
作者简介:
#. 电话:(022)27406140; 传真: (022)27403475; 电子信箱: bzhang@tju.edu.cn基金资助:
Chengying Guoa, Yanmei Shia, Siyu Luc, Yifu Yua,*(), Bin Zhanga,b,#(
)
Received:
2020-09-11
Accepted:
2020-09-11
Online:
2021-08-18
Published:
2020-12-10
Contact:
Yifu Yu,Bin Zhang
About author:
# +86-22-27406140; Fax: +86-22-27403475; E-mail: bzhang@tju.edu.cnSupported by:
摘要:
电催化水分解产氢作为一种有前途的制氢技术被全世界研究者广泛关注. 然而, 此领域仍然缺少一种高效、无污染的催化剂, 以降低能耗, 提升反应动力学, 进而推进电解水的实际应用. 近年来研究发现, 具有短程有序、长程无序特征的非晶纳米材料在电解水领域表现出极其优异的性能. 有趣的是, 固有的无序结构赋予了非晶纳米材料丰富的高活性位点. 鉴于此, 本文综述了非晶纳米材料的制备策略以及表征方法, 并且对其高活性来源进行了系统地分析. 此外, 本文通过分析近几十年的研究成果指出了非晶纳米材料在电解水领域面临的挑战和应用前景.
非晶纳米材料的合成方法主要分为两类: 直接合成和间接合成. 直接合成主要包括: 电沉积、光化学金属-有机沉积、气溶胶-喷雾辅助法、反胶束溶胶-凝胶法、水热法、共沉淀法和氧化还原法. 其中, 气溶胶-喷雾辅助技术可以通过控制母液中金属离子的浓度精准地控制非晶纳米材料中各种金属元素的组成, 从而有目的地调控并优化催化活性. 间接合成主要分为原位转化和非原位转化. 原位转化是指晶体材料在反应过程中表面会原位转化为非晶结构作为反应的真实活性物质. 非原位转化是指当纳米材料尺度非常小时, 高表面能将会破坏材料的结晶度得到非晶材料. 另外, 非晶材料长程无序的特点给其表征带来极大挑战. 目前, 对于非晶材料表征的一般流程是: 首先通过X射线粉末衍射确定非晶结构, 并通过透射电子显微镜以及扫描电子显微镜探索其形貌结构; 再通过选区电子衍射以及高角度环形暗场扫描透射电子显微镜进一步确定非晶结构; 然后, 通过能谱、电感耦合等离子体发射光谱和X射线光电子能谱分析其化学组成及化学态; 最后, 采用拉曼光谱和同步辐射数据提供晶体结构信息.
本文对非晶纳米材料高活性的起源进行了探究. 在电解水领域, 非晶纳米材料通常表现出优于晶体材料的性能. 优异的活性与活性位点数量的增多以及活性位点活性的提升有关: (1)非晶纳米材料具有长程无序的特征, 可以暴露更多活性位点, 并且其表面存在的大量悬挂键也可以作为活性位点; (2)非晶纳米材料的活性位点可以拓展至催化剂体相内部, 大幅提升了活性位点数量; (3)非晶纳米材料结构灵活性高, 活性位点在催化反应过程中可以转变成任意形状, 提升了活性位点的活性; (4)非晶纳米材料的高韧性和应变能力赋予其较高的稳定性.
非晶纳米材料已广泛应用于电解水领域, 但仍然存在一些问题: (1)非晶纳米材料由于原子级结构不确定, 其电催化机理很难探究; (2)理论模拟作为研究电化学反应途径的有力工具很难应用于非晶纳米材料的研究; (3)随着无序程度的增加, 活性位点数量和活性逐渐增加, 但电导率逐渐下降. 尽管如此, 由于非晶纳米材料结构灵活性高和自重组能力快速, 人们对其在电解水领域的研究兴趣越来越大, 并且该领域显示出良好的应用前景, 高效非晶纳米材料的设计合成及其催化机理的研究将成为今后研究的重点.
郭成英, 史艳梅, 卢思宇, 于一夫, 张兵. 非晶纳米材料用于电解水的研究进展[J]. 催化学报, 2021, 42(8): 1287-1296.
Chengying Guo, Yanmei Shi, Siyu Lu, Yifu Yu, Bin Zhang. Amorphous nanomaterials in electrocatalytic water splitting[J]. Chinese Journal of Catalysis, 2021, 42(8): 1287-1296.
Fig. 1. (a) Scheme of processes associated with an aerosol-spray assisted method for the synthesis of amorphous nanomaterials. Reproduced with permission from [33]. Copyright 2014, Wiley-VCH. (b) Illustration of the two-step hydrothermal synthesis of amorphous FeMoS4 NRA/CC. Reproduced with permission from [37]. Copyright 2017, Royal Society of Chemistry.
Fig. 2. HRTEM images (left) and FFTs (right) of surface regions in LiCoO2 (a-c) and LiCoPO4 (d-f): (a) pristine LiCoO2, (b) cycled in 0.1M KPi, (c) cycled in 0.1 M KOH, (d) pristine LiCoPO4, (e) cycled in 0.1 M KPi, and (f) cycled in 0.1M KOH. Reproduced with permission from [38]. Copyright 2012, American Chemical Society. (g) Scheme of in situ formed amorphous layer through leaching Y3+ in Y2Ir2O7. Reproduced with permission from [42]. Copyright 2017, American Chemical Society. (h) HRTEM image of Ni2P nanoparticles after electrochemical OER measurement for 1 h; inset: FFT of the dotted yellow area. EDX mapping of P (i), O (j), and Ni (k), and combined (l) elemental mapping. Reproduced with permission from [43]. Copyright 2015, Royal Society of Chemistry.
Fig. 3. Scheme of transformation from crystalline Pd3P2S8 into amorphous Li-PPS NDs and their electrocatalytic performance. Reproduced with permission from [49]. Copyright 2018, Nature Publishing Group.
Fig. 4. (a) XRD patterns of amorphous Co/Fe-based (oxy)hydroxide. A-C and A-F indexed to Co-based (oxy)hydroxide and Fe-based (oxy)hydroxide. The Co/Fe ratio of CFOH-COH-1/3, CFOH-COH-1, and CFOH-COH-3 are 1:3, 1:1, and 1:1, respectively. Reproduced with permission from [50]. Copyright 2020, Elsevier. (b) XRD of un-anodized and anodized materials followed by annealing at different temperatures. Reproduced with permission from [51]. Copyright 2016, Royal Society of Chemistry. (c) XRD of amorphous and crystalline Ni-Fe alloy. Reproduced with permission from [52]. Copyright 2020, American Chemical Society. (d) HRTEM image of crystalline CoFe2O4. (e) The corresponding SAED of (d). (f) HRTEM image of amorphous CoFe2On (n = ~3.66). (g) The corresponding SAED of (f). Reproduced with permission from [26]. Copyright 2014, American Chemical Society. (h) HRTEM image and SAED of amorphous Li-PPS NDs. Reproduced with permission from [49]. Copyright 2018, Nature Publishing Group. (i) HRTEM and SAED of amorphous Fe-Ni alloy. HAADF-STEM images of amorphous Fe-Ni alloy (j) and crystalline Fe-Ni alloy (k). Reproduced with permission from [52]. Copyright 2020, American Chemical Society.
Fig. 5. (a) Raman spectra of crystalline and disord cobalt manganese oxides. Reproduced with permission from [54]. Copyright 2013, Wiley-VCH. (b) Raman spectra of (1) Co3O4-20 h, (2) Co3O4-20 h-H2O2, and (3) Co3O4-20 h-H2O2-Ar, and the crystalline degree decreased from (1) to (3). Reproduced with permission from [56]. Copyright 2014, Wiley-VCH. (c) The XANES spectra of Co K-edge for pakhomovskyite loaded on FTO electrode, after operation at 1.35 V for 2 min and 10 h. Reproduced with permission from [57]. Copyright 2015, Wiley-VCH. (d) The k3-weighted FT spectra of NiSe/NiO, NiSe2 ultrathin nanowires (NiSe2 UNWs), NiO, and NiSe. Reproduced with permission from [58]. Copyright 2017, Wiley-VCH. (e) XANES profiles of Co3O4 under electrochemical conditions. Reproduced with permission from [28]. Copyright 2015, Nature Publishing Group. (f) Co K-edge FT-EXAFS k3χ data of SnCoFe and SnCoFe-Ar. Reproduced with permission from [60]. Copyright 2018, Wiley-VCH.
Fig. 6. (a) OER on the surface of a crystal; (b) OER catalysis in the bulk of amorphous material, and proton transfer to an electrolyte buffer base at the surface; (c) Catalytic currents for variation of the deposition charge from 2 to 200 mC. (d) TOF per cobalt ion and the formed O2 molecule. Reproduced with permission from [72]. Copyright 2014, Wiley-VCH.
Fig. 7. Electrochemical measurement and projected density of states (PDOS) of Ni-Fe Prussian blue analogues. (a) Chronopotentiometric measurement at a current density of 20 mA cm-2; (b) Polarization curves for different cycles and IrO2; (c) Multi-step deprotonation during OER; PDOS of Ni(OH)2 (d), NiOOH1.5 (e), and NiOOH0.5 (f). Reproduced with permission from [73]. Copyright 2018, American Chemical Society.
Fig. 8. (a) Chronopotentiometric curves of Ni foam, amorphous, and crystalline Ni-Fe alloy loaded Ni foam at a constant current density (500 mA cm-2) at 80 °C. Reproduced with permission from [52]. Copyright 2020, American Chemical Society. HRTEM image of pristine Co4N (b) without activation, and after 20 (c), 100 (d), 500 (e), and 1000 (f) CV cycles. Reproduced with permission from [89]. Copyright 2015, Wiley-VCH.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[4] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[5] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[6] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[7] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[8] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[9] | 张雯, 宋彩彩, 王嘉蔚, 蔡舒婷, 高梦语, 冯有祥, 鲁统部. 双向主客体作用促进水溶液中选择性光催化CO2还原与醇氧化[J]. 催化学报, 2023, 52(9): 176-186. |
[10] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[11] | 乔蔚, 于立策, 常进法, 杨甫林, 冯立纲. MoSe2纳米片耦合Pt纳米颗粒用于高效双功能催化甲醇辅助水电解制氢[J]. 催化学报, 2023, 51(8): 113-123. |
[12] | 李晓娟, 祁明雨, 李婧宇, 谭昌龙, 唐紫蓉, 徐艺军. PdS修饰的ZnIn2S4复合材料用于可见光催化硫醇偶联制备二硫化物同时产氢[J]. 催化学报, 2023, 51(8): 55-65. |
[13] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[14] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[15] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||