催化学报 ›› 2021, Vol. 42 ›› Issue (5): 670-693.DOI: 10.1016/S1872-2067(20)63743-3
罗靖洁a, 董亚南a, Corinne Petitb, 梁长海a,*(
)
收稿日期:2020-04-26
接受日期:2020-04-26
出版日期:2021-05-18
发布日期:2021-01-29
通讯作者:
梁长海
基金资助:
Jingjie Luoa, Yanan Donga, Corinne Petitb, Changhai Lianga,*(
)
Received:2020-04-26
Accepted:2020-04-26
Online:2021-05-18
Published:2021-01-29
Contact:
Changhai Liang
About author:* Tel/Fax: +86-411-84986353; E-mail: changhai@dlut.edu.cnSupported by:摘要:
近年来, 负载型金催化剂被视为多相催化工业化进程中的机遇和挑战, 因而广受研究. 载体的选取可以有效调控纳米金催化剂的化学结构及催化活性. 针对载体本身对反应是否具有活性, 可将其分为活性载体与惰性载体. 活性载体主要为具有还原性的金属氧化物; 而惰性载体, 诸如碳基材料、氧化硅、氧化铝等, 多为反应条件下不具备还原性或不可进行还原处理的材料, 不释放活性氧物种, 通常不具备显著催化活性. 一般情况下, 活性载体负载的金纳米粒子(Au NPs)在CO氧化反应、醇类选择性氧化反应、水煤气变换等多相催化反应中均展现出优越的催化活性及目标产物的选择性; 而以传统不可还原性材料负载Au NPs时, 若非采用特殊的优化手段, 该类金催化剂的活性及稳定性通常差强人意. 尽管如此, 不可还原材料作为惰性载体, 亦展现出无与伦比的独特优势, 例如其多具有易于调控的表面性能、可调变的多样化微观结构, 丰富的地壳储量和易于大规模产业化的优势等. 因此, 针对不可还原材料负载的纳米金催化剂, 探讨创新性的改性手段及其对金催化剂活性与稳定性的理性调控, 成为近年来纳米金催化领域中最引人关注的研究课题之一. 然而到目前为止, 基于惰性载体负载金催化剂的系统性总结工作仍未见报道. 作者及其所在团队围绕Au-载体/助剂表界面性质的精准调控及理性验证, 以CO氧化与醇类选择氧化等反应为探针, 对基于不可还原材料的纳米金催化剂的设计理念和改性手段进行了多尺度的探索. 基于本组研究工作及近十年相关文献报道, 本综述将以几种典型的不可还原材料为例, 针对负载型金催化剂的研究进展进行详尽的阐述. 从催化剂设计的理论设想和实践方案入手, 对特殊结构材料的独创性研制手段、二元金属掺杂及表面功能化手段、特殊氛围处理等备受关注的改性手段进行归纳. 并进一步对改性手段影响表面化学结构、电子结构、Au-载体/助剂间的相互/协同作用、催化剂形貌的实例以及水物种参与对反应的影响等方面展开对比讨论. 本综述旨在为致力于金催化研究工作及有志在该领域一展抱负的研究者拓展新的方向, 全面诠释不可还原材料作为惰性载体在金催化领域的巨大应用前景, 进一步激发不可还原载体负载金催化剂开发的新思路, 推动纳米金催化的工业化进程.
罗靖洁, 董亚南, Corinne Petit, 梁长海. 不可还原材料负载的纳米金催化剂: 理性设计与优化[J]. 催化学报, 2021, 42(5): 670-693.
Jingjie Luo, Yanan Dong, Corinne Petit, Changhai Liang. Development of gold catalysts supported by unreducible materials: Design and promotions[J]. Chinese Journal of Catalysis, 2021, 42(5): 670-693.
Fig. 2. Catalytic activity in CO oxidation for the Au0.60Cu0.40/Al2O3 (A) and Au0.60Cu0.40/SiO2 (B) catalysts after an oxidative or reductive pretreatment. Evolution of the Au0.60Cu0.40/Al2O3 catalysts during the in situ XRD (C) and in situ XANES (D) at Cu K-edge during activation (up) and reduction (down), respectively [20].
Fig. 4. TEM images of Au NPs on activated carbon with extraordinary gold loading and good distribution of Au NPs in Au/C-NC (A) and Au/C-AQ (B); Electro-catalytic selective oxidation of glycerol on Au/C-NC (C) and Au/C-AQ (D) (55 wt%) in AEMDGFC under the optimized condition for a high yield of tartronate [55].
Fig. 5. (A) STEM image of Au/GO before the reaction in fresh status; (B) HRTEM image of an AuNP on GO; (C) HRTEM image of an AuNP on GO after prolonged reduction treatment, with an inset of the fast Fourier transform [66].
Fig. 6. TEM images of Au/H-600 (A), Au/H-800 (B), and Au/TH-800 (C) (H: HAP, -X: calcination temperature in °C); (D) In situ DRIFT spectra of CO adsorption on Au/H-X and Au/H-500-H2; (E) CO conversions at 100 °C on Au/H-500 and Au/H-200 with the alternative treatment of O2 and H2 flow; 40 mg and 50 mg catalysts were used for Au/H-200 and Au/H-500, respectively. Gas flow: 1 vol% CO + 1 vol% O2 balanced with He, 33.3 mL·min-1; (F) In situ DRIFT spectra of CO adsorption on various Au catalysts at room temperature after 10 min adsorption by Au/TH-800 (TH: TiO2 modified HAP); (G) The evolution of in situ DRIFT spectra at -130 °C after introducing 15 torr O2 to the CO preadsorbed Au/TH-800 [67,68].
Fig. 7. (A) Schematic of the Au NPs@OMCs-800 °C obtained from 3D multicomponent colloidal spheres; (B) HAADF-STEM image of Au@OMCs-800 °C; (C,D) elemental mapping images of C, Au, and their overlap in Au@OMCs-800 °C; (E) Conversion of phenylacetylene homocoupling to 1,4-diphenylbutadiyne; (F) conversion of p-nitrobenzene hydrogenation to phenylamine; (G) CV diagrams for different catalysts scanning between the potentials of -0.25 V to 1.0 V with a scan rate of 50 mV·s-1; (H) specific activity of the formic acid oxidation of different catalysts [94].
Fig. 8. (A) CO conversion tendency chart during Au3+ ions loading in the pore channels of HPCN; (B) CO conversion tendency chart with increasing temperature from 20 to 340 °C; (C,D) TEM and STEM images of 7.0 wt% Au/HPCN; (E) schematic explanation of the preparation of a catalyst and catalytic CO oxidation [96].
Fig. 9. (A-D) TEM images and high-magnification TEM image of Au NPs embedded into the ultrathin hollow graphene nanoshell (Au@HGN); (E) STEM and EDX results of the Au@HGN nanocomposite; (F) UV/Vis spectra of 4-nitrophenol reduction reaction in the absence and presence of the Au@HGN catalyst. Inset: color changes of the conversion of 4-nitrophenol to 4-aminophenol; (G) The stability of catalysts under the same reduction reaction with five cycles [97].
Fig. 11. Schematic of vapor-assisted ozone functionalization of CNT (A) and schematic of colloidal Au NPs deposited on CNT and oCNT (B), functionalized oCNT under mild (C) and harsh (D) conditions, STEM and HR-TEM images of Au/oCNT after calcination (E,F) [28,118].
Fig. 12. (A) Plot showing the DFT calculated binding energies (in eV) and barriers for auto graphene, oxygenated divacancy (Vac2O2), and oxygenated vacancy (VacO2); (B) Au clusters formed on CNT surfaces after a nominal Au evaporation of 5 ? pristine MWCNTs; (C) Variation of the C 1s and O 1s core levels peak intensity for increasing amounts of Au evaporated onto CNTs- the lines are a visual guide only [128].
Fig. 13. (A) Uv-vis of initial Au colloid and supernatant Au colloid in the presence of SS1 and SS5 with different silica diameters; (B) CO conversion as a function of temperature over different gold catalysts; (C,D) schematic description of the nanostructure variations of different Au catalysts during CO oxidation. The upper inset picture illustrates particle changes during thermal treatment [21,27].
Fig. 14. Comparison of the catalytic activity of CJ-Au/Pd, Au, Pd, and Pd/Au alloy NCs for aerobic glucose oxidation [144]. Schematic insets and numbers shown at the top of each bar indicate the structural models and the average particle sizes, respectively, of the NCs; Au*, the activity was normalized by the number of surface Au atoms in NCs; Pd**, the activity was normalized by the number of surface Pd atoms, the activity of 8290?moles?glucose? h-1?per?mole?surface?Pd.
Fig. 15. (A) Online Pd and Au dissolution profiles recorded with AuPd/C by the SFC/ICP-MS technique during degradation cycle voltammograms; (B) Initial AuPd/C CV (0.1-1.6 VRHE) in Ar-purged 0.1MHClO4 and after degradation protocols; (C) Catalyst EDS line scan after degradation; (D) Representative evolution of the surface composition and the H2O2 selectivity (%) during the ADPs [153].
Fig. 16. (A,B) TEM images of the 3 nm-Au-C observed along the (110) and the (001) directions; FT-EXAFS (C) and XANES (D) spectra for (a) 3.4 and (b) 8.9 nm gold particles on carbon [159].
Fig. 17. (a) Illustration of the nanoparticle formation via the reduction of solvated ions; (b) Pt mass-normalized anodic sweeps obtained from PtAu nanoparticle catalysts in an electrolyte that contained 0.1?M concentrations of both HClO4 and HCOOH, with the peak currents graphed for comparison (left); (c) The plotted FT-EXAFS spectra obtained from Pt and Au L3-edge absorption spectra of PtAu NPs illustrate the drastic under the coordination of Pt atoms in low-Pt-content samples [179].
Fig. 18. (A, B) In situ DRIFT spectra of CuO*/Au sample during CO adsorption and subsequent desorption in He at 25 °C; (C) CO conversion as a function of temperature by different catalysts; (D) The surface composition of Au species revealed by XPS spectra; (E) The relative ratio of CO2 desorption peaks at 100 and 300 °C revealed by CO-TPD [181,182].
Fig. 19. (A) Effects of support water coverage on CO adsorption on Au. The blue region represents water adsorbed onto the support; (B) Schematic representation of the lower (green) pathway [189].
|
| [1] | 刘储浩, 吴悦, 方锦杰, 余坷, 李慧, 贺文君, 张永臻, 柳守杰, 陈郑, 董京, 陈晨. 氮掺杂碳催化剂在高效电化学CO2还原中的协同效应[J]. 催化学报, 2022, 43(7): 1697-1702. |
| [2] | 成金玲, 王定胜. 二维水滑石复合材料用于电解水的研究进展[J]. 催化学报, 2022, 43(6): 1380-1398. |
| [3] | 钟威, 许家超, 王苹, 朱必成, 范佳杰, 余火根. 新型核壳Ag@AgSex纳米粒子析氢助剂: 原位表面硒化以提升TiO2的光催化产氢活性[J]. 催化学报, 2022, 43(4): 1074-1083. |
| [4] | 吴凡, 贺雷, 李文翠, 路饶, 王阳, 陆安慧. 氮化硼负载的高分散Au-CuOx纳米颗粒用于低温CO氧化[J]. 催化学报, 2021, 42(3): 388-395. |
| [5] | 郝磊端, 夏启能, 张强, Justus Masa, 孙振宇. 提高金属有机骨架材料在二氧化碳热催化转化中的性能: 策略及前景展望[J]. 催化学报, 2021, 42(11): 1903-1920. |
| [6] | 贾帅强, 朱庆宫, 吴海虹, 楚萌恩, 韩世涛, 冯如婷, 涂京慧, 翟建新, 韩布兴. 铜–锑双金属合金高效电催化还原二氧化碳制乙烯[J]. 催化学报, 2020, 41(7): 1091-1098. |
| [7] | 刘乾锋, 王二东, 孙公权. 层状过渡金属氢氧化物应用于碱性氢气析出反应[J]. 催化学报, 2020, 41(4): 574-591. |
| [8] | 路饶, 贺雷, 王阳, 高新芊, 李文翠. 镍掺杂对氧化铝纳米片负载金催化剂在CO氧化反应中的促进作用[J]. 催化学报, 2020, 41(2): 350-356. |
| [9] | 任泉明, 莫胜鹏, 樊洁, 冯振涛, 张明远, 陈培榕, 高加俭, 付名利, 陈礼敏, 吴军良, 叶代启. 构筑耦合界面提高MnO2@Co3O4催化氧化甲苯性能[J]. 催化学报, 2020, 41(12): 1873-1883. |
| [10] | 王小龙, 蓝国钧, 程载哲, 韩文锋, 唐浩东, 刘化章, 李瑛. 采用配位稳定策略制备的炭负载钌催化剂乙炔氢氯化反应性能[J]. 催化学报, 2020, 41(11): 1683-1691. |
| [11] | 肖静冉, 范龙龙, 黄忠亮, 钟俊, 赵飞刚, 徐凯吉, 周树锋, 詹国武. Co-Pi与FeOOH对Fe2O3光阳极用于光电化学氧化的协同作用原理[J]. 催化学报, 2020, 41(11): 1761-1771. |
| [12] | 赵宝明, 建艳飞, 姜泽宇, Reem Albilali, 何炽. 稀土氧化物EuOx对Pt/CeO2材料在甲苯催化燃烧中的显著促进机制[J]. 催化学报, 2019, 40(4): 543-552. |
| [13] | 任国庆, 裴广贤, 张景才, 李为臻. CeO2对抗烧结AuGMgGa2O4催化剂用于水汽变换和催化燃烧反应的促进作用[J]. 催化学报, 2019, 40(4): 600-608. |
| [14] | 王苹, 徐顺秋, 陈峰, 余火根. Ni纳米粒子作为电子转移剂和NiSx作为产氢界面活性位协同增强TiO2光催化制氢性能[J]. 催化学报, 2019, 40(3): 343-351. |
| [15] | 郭燕燕, 代成娜, 雷志刚. 2-乙基蒽醌在双金属整体式催化剂上的氢化反应:实验和DFT研究[J]. 催化学报, 2018, 39(6): 1070-1080. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||