催化学报 ›› 2021, Vol. 42 ›› Issue (11): 1831-1842.DOI: 10.1016/S1872-2067(21)63839-1
• 综述 • 下一篇
杨辰昕a,†, 陈鹤南a,†, 彭焘a,†,b, 梁柏耀a, 张云a(), 赵伟a,#(
)
收稿日期:
2021-02-03
修回日期:
2021-02-03
出版日期:
2021-11-18
发布日期:
2021-05-18
通讯作者:
张云,赵伟
作者简介:
第一联系人:共同第一作者.
基金资助:
Chenxin Yanga,†, Henan Chena,†, Tao Penga,†,b, Baiyao Lianga, Yun Zhanga(), Wei Zhaoa,#(
)
Received:
2021-02-03
Revised:
2021-02-03
Online:
2021-11-18
Published:
2021-05-18
Contact:
Yun Zhang,Wei Zhao
About author:
#E-mail: weizhao@szu.edu.cnSupported by:
摘要:
为节能减排和能源结构调整以快速实现“碳中和”, 发展可再生、清洁与绿色的能源以替代传统化石能源已成为当今世界高质量发展的重要共识. 生物质能作为一种典型的可再生能源, 具有储量丰富、分布广泛、可有效转化成各种化工原料和燃料等特点逐步受到广泛关注并成为科研热点. 木质素是生物质的重要组成部分, 其含氧量低、热值高, 可转化成高热值燃料; 同时, 木质素富含芳香结构单元, 可以转化成各类高附加值化工原料及医药中间体. 木质素解聚及其对应单体升级转化是木质素高效转化利用的关键技术. 当前, 传统热催化是其主要应用技术手段. 然而, 该类方法常在高温高压下进行, 需消耗大量能源及众多繁琐操作步骤, 不易规模化生产. 相对而言, 电催化技术能实现常温常压的木质素解聚及对应单体的升级转化, 采用由可再生能源(例如风能、太阳能等)获得的清洁电力, 则能实现完全绿色可持续生产, 对未来经济社会的发展及”碳中和”的目标具有重大意义.
本文综述了近年来电催化技术在木质素升级转化成高附加值燃料和化学品方面的应用, 尤其是在木质素解聚及其对应单体于水溶液相关电解质中升级转化方面的应用. (1)针对总体研究背景进行了概述, 总结了木质素研究的重要意义并概括了当前木质素研究的主要思路, 并简单介绍了木质素结构单元及连接键等基本性质; (2)针对电催化技术在木质素应用方面进行了总结, 包括反应类型和反应路径等; (3)总结了木质素常用的几种典型表征技术手段, 如GC-MS、NMR、IR等; (4)总结了电催化木质素解聚及其单体升级转化研究现状, 对电催化木质素解聚应用中木质素前体类型、电解质种类和电还原/氧化催化剂进行了详细介绍及客观评价, 并对几种代表性单体的电催化加氢反应及氧化反应做了详细评述. 在此基础上展望了电催化技术在木质素升级转化中的应用前景, 指出了当前电催化技术在木质素升级转化应用中存在的实际问题, 提出了电催化技术在木质素升级转化中的发展方向.
杨辰昕, 陈鹤南, 彭焘, 梁柏耀, 张云, 赵伟. 电催化木质素升级转化成高附加值化学品和燃料的研究进展[J]. 催化学报, 2021, 42(11): 1831-1842.
Chenxin Yang, Henan Chen, Tao Peng, Baiyao Liang, Yun Zhang, Wei Zhao. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective[J]. Chinese Journal of Catalysis, 2021, 42(11): 1831-1842.
Monolignol | H/% | G/% | S/% |
---|---|---|---|
Softwood (Conifer wood) | 0-5 | 90-100 | 0-1 |
Hardwood (Broadleaf wood) | Trace | 25-50 | 46-75 |
Grass | 5-33 | 25-80 | 20-54 |
Table 1 Content of lignin units in the typical natural plants [20,21].
Monolignol | H/% | G/% | S/% |
---|---|---|---|
Softwood (Conifer wood) | 0-5 | 90-100 | 0-1 |
Hardwood (Broadleaf wood) | Trace | 25-50 | 46-75 |
Grass | 5-33 | 25-80 | 20-54 |
Typical reaction | Process | Acid aqueous electrolyte | Basic aqueous electrolyte |
---|---|---|---|
Electro-hydrogenation | *H formation | H+ + e- + * → *H | H2O + e- + * → *H + OH- |
lignin-based substrate reaction | R + * → *R *R + *H → *RH *RH → * + RH | ||
H2 generation | H++ e- + *H → * + H2 *H + *H → * + H2 | H2O + e- + *H → * + H2 + OH- *H + *H → * + H2 | |
Electro-oxidation | *O formation | H2O + * → *OH + e- + H+ *OH → *O + e- + H+ | OH- + * → *OH + e- *OH + OH- → *O + e- + H2O |
lignin-based substrate reaction | R + * → *R *R + *O → *RO *RO → * + RO | ||
O2 generation | *O + H2O → *OOH + e- + H+ *OOH → * + O2 + e- + H+ | *O + HO- → *OOH + e- *OOH + OH-→ * + O2 + e- + H2O |
Table 2 Possible reaction mechanisms of electro-hydrogenation and electro-oxidation [36,41-47].
Typical reaction | Process | Acid aqueous electrolyte | Basic aqueous electrolyte |
---|---|---|---|
Electro-hydrogenation | *H formation | H+ + e- + * → *H | H2O + e- + * → *H + OH- |
lignin-based substrate reaction | R + * → *R *R + *H → *RH *RH → * + RH | ||
H2 generation | H++ e- + *H → * + H2 *H + *H → * + H2 | H2O + e- + *H → * + H2 + OH- *H + *H → * + H2 | |
Electro-oxidation | *O formation | H2O + * → *OH + e- + H+ *OH → *O + e- + H+ | OH- + * → *OH + e- *OH + OH- → *O + e- + H2O |
lignin-based substrate reaction | R + * → *R *R + *O → *RO *RO → * + RO | ||
O2 generation | *O + H2O → *OOH + e- + H+ *OOH → * + O2 + e- + H+ | *O + HO- → *OOH + e- *OOH + OH-→ * + O2 + e- + H2O |
Fig. 4. Mass spectra of various lignin monomers from lignin (a) phenol of 94 g·mol-1, (b) guaiacol of 124 g·mol-1, (c) 4-propyl-guaiacol of 166 g·mol-1, and (d) 4-propylsyringol of 196 g·mol-1, showing their molecular mass and fragments.
Fig. 5. 1H NMR spectrum of phenol and cyclohexene (in CDCl3). Reprinted with permission from Ref. [57]. Copyright (2015) The Royal Society of Chemistry.
Fig. 7. Potential reaction mechanism of lignin downgrading in a thio-assisted electrolytic system. Reprinted with permission from Ref. [67]. Copyright (2021) The Royal Society of Chemistry.
Fig. 8. (a) Vanillin production rates (produced from electro-oxidation lignin depolymerization) versus cell voltages. (b) Lignin depolymerization to vanillin via electro-oxidation at the NiOOH interface. (c) Proposed mechanism for electro-oxidation lignin depolymerization in a t-BuOOH-assisted electrolytic system. (a) Reprinted with permission from Ref. [83]. Copyright (2020) The Electrochemical Society; (b) Reprinted with permission from Ref. [82]. Copyright (2018) John Wiley & Sons; (c) Reprinted with permission from Ref. [90]. Copyright (2021) American Chemical Society.
Fig. 9. Possible reaction pathways of electro-hydrogenation of phenol (a), guaiacol (b), and benzaldehyde (c). (a) Reprinted with permission from Ref. [96]. Copyright (2015) Elsevier; (b) Reprinted with permission from Ref. [94]. Copyright (2019) John Wiley&Sons; (c) Reprinted with permission from Ref. [97]. Copyright (2019) American Chemical Society.
Fig. 10. (a) Electro-hydrogenation for phenol during “suspension” operation; Electro-hydrogenation of guaiacol in a separated cell via (b) Raney-Nickel and (c) PtNiB/CMK-3 catalyst; (d) Reaction rate of electro-hydrogenation of benzaldehyde to benzyl alcohol versus the computed binding energies of benzaldehyde. (a) Reprinted with permission from Ref. [96]. Copyright (2015) Elsevier. (b) Reprinted with permission from Ref. [53]. Copyright (2015) Royal Society of Chemistry. (c) Reprinted with permission from Ref. [33]. Copyright (2019) John Wiley & Sons. (d) Reprinted with permission from Ref. [97]. Copyright (2019) American Chemical Society.
Fig. 11. Electro-oxidation of lignin derivatives to carboxylates in a separated cell. Reprinted with permission from Ref. [95]. Copyright (2021) John Wiley&Sons.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 关志朋, 杨东锋, 刘钊, 朱书祥, 仲星星, 王华敏, 李向伟, 戚孝天, 易红, 雷爱文. 区域选择性地电化学氧化自由基参与的邻位-(4 + 2)/原位-(3 + 2)环化[J]. 催化学报, 2023, 52(9): 144-153. |
[8] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[9] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[10] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[11] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[12] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[13] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[14] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
[15] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||