催化学报 ›› 2021, Vol. 42 ›› Issue (10): 1700-1711.DOI: 10.1016/S1872-2067(21)63831-7
        
               		Igor B. Krylova,b, Elena R. Lopat’evaa,b, Irina R. Subbotinaa, Gennady I. Nikishina, Bing Yuc, Alexander O. Terent’eva,b(
)
                  
        
        
        
        
    
收稿日期:2020-12-19
									
				
									
				
											接受日期:2021-04-14
									
				
											出版日期:2021-06-20
									
				
											发布日期:2021-06-20
									
			通讯作者:
					Alexander O. Terent’ev
							作者简介:*电话: +7-499-137-29-44; 传真: +7-499-135-53-28; 电子信箱:alterex@yandex.ru
        
               		Igor B. Krylova,b, Elena R. Lopat’evaa,b, Irina R. Subbotinaa, Gennady I. Nikishina, Bing Yuc, Alexander O. Terent’eva,b(
)
			  
			
			
			
                
        
    
Received:2020-12-19
									
				
									
				
											Accepted:2021-04-14
									
				
											Online:2021-06-20
									
				
											Published:2021-06-20
									
			Contact:
					Alexander O. Terent’ev   
							摘要:
均相催化和多相催化通常被认为是独立甚至相互对立的学科. 本文提出了一种新型的用于分子氧选择性氧化烷基苯的杂多酸/均相混合催化体系. 该催化体系由N-羟基邻苯二甲酰亚胺(NHPI, 用于自由基链式反应的均相有机催化剂)和纳米TiO2(多相紫外光活性光氧化催化剂)两种组分组成. NHPI与TiO2的协同作用使光氧化活性从紫外光转移到可见光, 并产生邻苯二甲酰亚胺-N-氧基(PINO)自由基. NHPI/PINO催化的自由基链式反应能够在没有额外光输入的情况下进行, 从而从根本上提高能源效率. 通过控制NHPI/TiO2比率优化产物选择性, 进而使烷基芳烃优先形成过氧化氢或酮.
Igor B. Krylov, Elena R. Lopat’eva, Irina R. Subbotina, Gennady I. Nikishin, Bing Yu, Alexander O. Terent’ev. 多相/均相TiO2/N-羟酰亚胺混合体系中可见光诱导分子氧可控光催化氧化苄基反应[J]. 催化学报, 2021, 42(10): 1700-1711.
Igor B. Krylov, Elena R. Lopat’eva, Irina R. Subbotina, Gennady I. Nikishin, Bing Yu, Alexander O. Terent’ev. Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen[J]. Chinese Journal of Catalysis, 2021, 42(10): 1700-1711.
| Consumed power  (W)  |  Irradiance * (W/m2) | Relative irradiated  power  |  
|---|---|---|
| 10 | 1165 | 1 | 
| 5 | 700 | 0.6 | 
| 2.5 | 407 | 0.35 | 
| 1 | 203 | 0.17 | 
Table 1 Consumed and relative irradiated power values for Blue LEDs used in the present study.
| Consumed power  (W)  |  Irradiance * (W/m2) | Relative irradiated  power  |  
|---|---|---|
| 10 | 1165 | 1 | 
| 5 | 700 | 0.6 | 
| 2.5 | 407 | 0.35 | 
| 1 | 203 | 0.17 | 
| Run | Deviation from general conditions a | X  (%)  |  S2a (%) | S3a (%) | S4a (%) | 
|---|---|---|---|---|---|
| 1 | None | 40 | 39 | 5 | 48 | 
| (43) | (40) | (44) | |||
| 2 | TiO2 without NHPI | — | — | — | — | 
| 3 | NHPI without TiO2 | <5 | 80 | — | — | 
| 4 | TiO2 was filtered before irradiation | <5 | 76 | — | — | 
| 5 | No irradiation (in dark) | <5 | 50 | — | — | 
| 6 | Irradiation by 10 W violet LED  (λmax = 405 nm)  |  44 | 22 | 6 | 65 | 
| 7 | Irradiation by 10 W UV LED  (λmax = 373 nm)  |  27 | 51 | 4 | 28 | 
| 12 | 5 W blue LED | 39 | 44 | 3 | 45 | 
| (41) | (44) | (49) | |||
| 13 | 1 W blue LED | 31 | 55 | 3 | 32 | 
| 14 | NHSI instead of NHPI | 21 | 8 | 9 | 28 | 
| 15 | Cl4-NHPI instead of NHPI | 28 | 40 | 8 | 52 | 
| 16 | NHNPI instead of NHPI | 26 | 3 | 11 | 53 | 
| 17 | TiO2 anatase nanopowder | 25 | 62 | 4 | 21 | 
| 18 | TiO2 P25 Aeroxide | 26 | 59 | 5 | 24 | 
| 19 | C2H4Cl2 as solvent | 19 | 14 | 5 | 70 | 
| 20 | PhCl as solvent | 13 | 6 | 8 | 85 | 
| (18) | (13) | (60) | |||
| 21 | MeNO2 as solvent | 57 | 12 | 9 | 75 | 
| 22 | AcOH as solvent | (33) | (17) | (48) | |
| 23 | 40 °C | 55 | 15 | 4 | 66 | 
| (56) | (18) | (60) | |||
| 24 | 60 °C | 66 | 2 | 2 | 85 | 
| 25 | Reaction under air | 32 | 29 | 4 | 59 | 
| 26 | Reaction under argon | <5 | — | — | 87 | 
| 27 | Reaction time 24 h | 65 | 4 | 2 | 85 | 
Table 2 Influence of photocatalytic system composition, irradiation wavelength and power, temperature, and solvent nature on conversion of ethylbenzene 1a and selectivity of 2a-4a formation.
| Run | Deviation from general conditions a | X  (%)  |  S2a (%) | S3a (%) | S4a (%) | 
|---|---|---|---|---|---|
| 1 | None | 40 | 39 | 5 | 48 | 
| (43) | (40) | (44) | |||
| 2 | TiO2 without NHPI | — | — | — | — | 
| 3 | NHPI without TiO2 | <5 | 80 | — | — | 
| 4 | TiO2 was filtered before irradiation | <5 | 76 | — | — | 
| 5 | No irradiation (in dark) | <5 | 50 | — | — | 
| 6 | Irradiation by 10 W violet LED  (λmax = 405 nm)  |  44 | 22 | 6 | 65 | 
| 7 | Irradiation by 10 W UV LED  (λmax = 373 nm)  |  27 | 51 | 4 | 28 | 
| 12 | 5 W blue LED | 39 | 44 | 3 | 45 | 
| (41) | (44) | (49) | |||
| 13 | 1 W blue LED | 31 | 55 | 3 | 32 | 
| 14 | NHSI instead of NHPI | 21 | 8 | 9 | 28 | 
| 15 | Cl4-NHPI instead of NHPI | 28 | 40 | 8 | 52 | 
| 16 | NHNPI instead of NHPI | 26 | 3 | 11 | 53 | 
| 17 | TiO2 anatase nanopowder | 25 | 62 | 4 | 21 | 
| 18 | TiO2 P25 Aeroxide | 26 | 59 | 5 | 24 | 
| 19 | C2H4Cl2 as solvent | 19 | 14 | 5 | 70 | 
| 20 | PhCl as solvent | 13 | 6 | 8 | 85 | 
| (18) | (13) | (60) | |||
| 21 | MeNO2 as solvent | 57 | 12 | 9 | 75 | 
| 22 | AcOH as solvent | (33) | (17) | (48) | |
| 23 | 40 °C | 55 | 15 | 4 | 66 | 
| (56) | (18) | (60) | |||
| 24 | 60 °C | 66 | 2 | 2 | 85 | 
| 25 | Reaction under air | 32 | 29 | 4 | 59 | 
| 26 | Reaction under argon | <5 | — | — | 87 | 
| 27 | Reaction time 24 h | 65 | 4 | 2 | 85 | 
| Run | NHPI (mol%) | TiO2  (mg)  |  X  (%)  |  S2a (%) | S3a (%) | S4a (%) | 
|---|---|---|---|---|---|---|
| 1 | 10 | 10 | 40 | 39 | 5 | 48 | 
| 2 | 10 | 5 | 36 | 54 | 5 | 35 | 
| 3 | 10 | 2.5 | 31 | 67 | 3 | 23 | 
| 4 b | 10 | 2.5 | 13 | 90 | — | 2 | 
| 5 c | 10 | 2.5 | 18 | 79 | — | 16 | 
| 6 d | 10 | 2.5 | 37 | 55 | 5 | 37 | 
| 7 e | 40 | 2.5 | 32 | 76 | — | 15 | 
| 8 e | 10 | 10 | 30 | 34 | 6 | 49 | 
| (31) | (39) | (53) | ||||
| 9 | 5 | 10 | 28 | 28 | 6 | 62 | 
| 10 | 2.5 | 10 | 24 | 14 | 6 | 67 | 
| 11 | 10 | 20 | 43 | 23 | 4 | 67 | 
| 12 | 10 | 40 | 44 | 19 | 5 | 71 | 
Table 3 Optimization of NHPI : TiO2 : ethylbenzene ratio and reaction time for the synthesis of hydroperoxide 2a by oxidation of ethylbenzene 1a with molecular oxygen a.
| Run | NHPI (mol%) | TiO2  (mg)  |  X  (%)  |  S2a (%) | S3a (%) | S4a (%) | 
|---|---|---|---|---|---|---|
| 1 | 10 | 10 | 40 | 39 | 5 | 48 | 
| 2 | 10 | 5 | 36 | 54 | 5 | 35 | 
| 3 | 10 | 2.5 | 31 | 67 | 3 | 23 | 
| 4 b | 10 | 2.5 | 13 | 90 | — | 2 | 
| 5 c | 10 | 2.5 | 18 | 79 | — | 16 | 
| 6 d | 10 | 2.5 | 37 | 55 | 5 | 37 | 
| 7 e | 40 | 2.5 | 32 | 76 | — | 15 | 
| 8 e | 10 | 10 | 30 | 34 | 6 | 49 | 
| (31) | (39) | (53) | ||||
| 9 | 5 | 10 | 28 | 28 | 6 | 62 | 
| 10 | 2.5 | 10 | 24 | 14 | 6 | 67 | 
| 11 | 10 | 20 | 43 | 23 | 4 | 67 | 
| 12 | 10 | 40 | 44 | 19 | 5 | 71 | 
 
  | 
								  
| [1] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. | 
| [2] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. | 
| [3] | 刘德法, 孙彬, 白硕杰, 高婷婷, 周国伟. 双助催化剂Ag/Ti3C2/TiO2分层花状微球用于增强光催化产氢活性[J]. 催化学报, 2023, 50(7): 273-283. | 
| [4] | 杨成功, 王冬娥, 黄蓉, 韩健强, 塔娜, 马怀军, 曲炜, 潘振栋, 王从新, 田志坚. 高效稳定的MoS2-TiO2纳米复合催化剂用于浆态床菲催化加氢[J]. 催化学报, 2023, 46(3): 125-136. | 
| [5] | 钱秀, 魏艳娇, 孙梦洁, 韩野, 张晓俐, 田健, 邵敏华. 在Ti3C2Tx MXene上原位生长2D TiO2纳米片的异质结构用于改善电催化氮气还原[J]. 催化学报, 2022, 43(7): 1937-1944. | 
| [6] | 李垒, 欧阳汶俊, 郑泽锋, 叶凯航, 郭禹希, 秦延林, 伍珍珍, 林展, 王铁军, 张山青. 基于Pt@TiO2催化剂光-热协同催化甲醇-水液相重整甲醇制氢[J]. 催化学报, 2022, 43(5): 1258-1266. | 
| [7] | 王芃梓, 肖文精, 陈加荣. 基于1,3-二烯的自由基反应的近期研究进展[J]. 催化学报, 2022, 43(3): 548-557. | 
| [8] | 李金懋, 吴聪聪, 李矜, 董兵海, 赵丽, 王世敏. 1D/2D TiO2/ZnIn2S4 S型异质结光催化剂及其高效制氢性能[J]. 催化学报, 2022, 43(2): 339-349. | 
| [9] | 李华鹏, 孙彬, 高婷婷, 李欢, 任永强, 周国伟. Ti3C2 MXene助催化剂组装的介孔TiO2用以增强光催化甲基橙降解和产氢活性[J]. 催化学报, 2022, 43(2): 461-471. | 
| [10] | 王可, 何仕辉, 林云志, 陈旬, 戴文新, 付贤智. 氧空位修饰的暴露TiO2{001}的Ru/TiO2增强光热协同CO2甲烷化活性和稳定性[J]. 催化学报, 2022, 43(2): 391-402. | 
| [11] | 朱玉坤, 庄严, 王乐乐, 唐华, 孟献丰, 佘希林. 构建0D/1D Ag3PO4/TiO2 S型异质结以实现高效光降解和析氧[J]. 催化学报, 2022, 43(10): 2558-2568. | 
| [12] | 薛超, 安华, 邵国胜, 杨贵东. 源于功函数差异的界面内建电场调控载流子定向分离的作用机制研究[J]. 催化学报, 2021, 42(4): 583-594. | 
| [13] | 贾爱平, 张云尚, 宋通洋, 胡一鸣, 郑万彬, 罗孟飞, 鲁继青, 黄伟新. TiO2晶面依赖的Ir-TiOx相互作用对Ir/TiO2催化剂巴豆醛选择性加氢性能的影响[J]. 催化学报, 2021, 42(10): 1742-1754. | 
| [14] | 李莉, 陈海军, 李磊, 李白海, 吴千宝, 崔春华, 邓彪, 罗永岚, 刘倩, 李廷帅, 张芳, Abdullah M. Asiri, 冯哲圣, 王焱, 孙旭平. La掺杂的TiO2纳米棒在常温常压下可促进电催化的N2转化为NH3[J]. 催化学报, 2021, 42(10): 1755-1762. | 
| [15] | 刘晶, 盖瑞侯得, 闫俊青, 刘生忠. 金属(Fe, Co, Ni, Cu)掺杂的Mo2C催化剂在TiO2表面用于中性条件光催化分解水产氢[J]. 催化学报, 2021, 42(1): 205-216. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||