催化学报 ›› 2022, Vol. 43 ›› Issue (8): 2017-2025.DOI: 10.1016/S1872-2067(21)64008-1

• 桥连热、光、电催化的表界面化学专栏 • 上一篇    下一篇

ZnCr2O4表面CO加氢反应活性位点的探测

凌云健a,b, 冉义华c, 邵伟鹏c, 李娜a,b, 焦峰a, 潘秀莲a, 傅强a, 刘志c, 杨帆a,c,d,*(), 包信和a   

  1. a中国科学院大连化学物理研究所催化基础国家重点实验室, 辽宁大连116023
    b中国科学院大学, 北京100039
    c上海科技大学物质科学与技术学院, 上海201210
    d上海科技大学上海市高分辨电子显微学重点实验室, 上海201210
  • 收稿日期:2021-09-19 接受日期:2021-12-20 出版日期:2022-08-18 发布日期:2022-06-20
  • 通讯作者: 杨帆
  • 基金资助:
    国家自然科学基金(21972144);国家自然科学基金(92045303);国家自然科学基金(91945302);国家自然科学基金(21991152);上海市科委(20JC1416700);上海市科委(21DZ2260400)

Probing active species for CO hydrogenation over ZnCr2O4 catalysts

Yunjian Linga,b, Yihua Ranc, Weipeng Shaoc, Na Lia,b, Feng Jiaoa, Xiulian Pana, Qiang Fua, Zhi Liuc, Fan Yanga,c,d,*(), Xinhe Baoa   

  1. aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bUniversity of Chinese Academy of Sciences, Beijing 100039, China
    cSchool of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    dShanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
  • Received:2021-09-19 Accepted:2021-12-20 Online:2022-08-18 Published:2022-06-20
  • Contact: Fan Yang
  • Supported by:
    National Natural Science Foundation of China(21972144);National Natural Science Foundation of China(92045303);National Natural Science Foundation of China(91945302);National Natural Science Foundation of China(21991152);Science and Technology Commission of Shanghai Municipality(20JC1416700);Science and Technology Commission of Shanghai Municipality(21DZ2260400)

摘要:

CO加氢转化为高附加值化学品是煤、天然气和生物质等清洁利用的核心过程之一. 近年来, 氧化物催化剂越来越多地被用于加氢反应, 其中ZnCrOx催化剂广泛应用于C1分子催化加氢反应, 并且是氧化物分子筛(OXZEO)合成气转化催化剂的主要活性组分之一. 由于复合氧化物表面结构的复杂性, 在CO加氢反应中, ZnCrOx上的活性位点和活化过程尚存在争议.

本文采用原位傅里叶变换红外光谱(FT-IR)和X射线光电子能谱(XPS)研究了不同条件预处理的ZnCr2O4尖晶石催化剂在CO/H2中的原位吸附和反应过程. XPS结果表明, 相较氧化的ZnCr2O4, 使用H2还原的ZnCr2O4中Cr6+的含量会下降, 同时带来更多的表面氧空位或羟基物种. Cr6+的还原也能由FT-IR谱中位于1013 cm-1铬酸盐的Cr=O振动峰的消失来证明. 利用CO作为探针分子, FT-IR结果表明还原的ZnCr2O4比氧化的ZnCr2O4具有更多的CO吸附位点. 通过对比ZnO和Cr2O3上的CO吸附波数发现, 这些CO吸附位点并非还原ZnCr2O4相分离产生的ZnO和Cr2O3, 而是通过直接还原表面Cr位点, 在其周围产生氧空位而产生的新位点. 在室温下, ZnCr2O4与CO能反应形成碳酸盐, 还原的ZnCr2O4产生碳酸盐的表面吸附量以及结合碳酸盐的稳定性要明显高于氧化的ZnCr2O4. 真空室温下, H2能在还原的ZnCr2O4上异裂解离形成氢化物, 并可在373 K稳定存在; 而ZnO表面H2异裂产生的氢化物在低于室温即已脱附. 还原的ZnCr2O4表面形成的氢化物在423 K以上会有部分转化为羟基, 这些羟基具有较高的热稳定性, 在673 K以上才开始脱附. 相比ZnO或Cr2O3, 还原的ZnCr2O4表面与CO和H2的作用都要更强.

在CO/H2 (1:1)混合气氛下, 还原的ZnCr2O4表面能发生CO加氢反应, 在373 K发现CO加氢产物甲酸盐形成. 然而, 在只有羟基存在的还原的ZnCr2O4表面上, 羟基只能通过水气变换反应氧化CO, 通过羟基含量的减少判断该反应发生在523 K以上; 而ZnCr2O4表面H2异裂形成的氢化物在373-473 K下就能使CO加氢形成甲酰基或甲酸盐. 因此, H2异裂形成的表面氢化物才是CO加氢的活性物种. 综上, 本文通过探测ZnCr2O4上的CO和H2活化和反应过程, 为复合氧化物表面的CO加氢的基元过程提供了更深入的理解.

关键词: ZnCr2O4, 傅里叶变换红外光谱, CO吸附, 氢化物, 羟基

Abstract:

Oxide catalysts are increasingly employed for hydrogenation reactions, among which ZnCrOx is a major catalyst for the oxide-zeolite (OXZEO) process and for the hydrogenation of C1 molecules in general. Owing to the complex nature of ternary oxides, the surface and catalytic properties of ZnCr2O4 spinel have remained controversial for CO hydrogenation. Combining in-situ Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy, we examined the adsorption and reaction of CO/H2 on the ZnCr2O4 catalysts, which were pre-treated under oxidative or reductive conditions. The reduced ZnCr2O4 catalyst was found to expose more surface sites for CO adsorption/reaction than the oxidized ZnCr2O4 catalyst. Exposing the reduced ZnCr2O4 to H2 at room temperature led to the formation of surface hydride species, which would transform into hydroxyl species at elevated temperatures. The reduced ZnCr2O4 surface exhibited much stronger interaction with CO and H2 than ZnO and Cr2O3. Exposing the reduced ZnCr2O4 to the CO and H2 (1:1) mixture gas led to the hydrogenation of CO. However, CO was oxidized by the hydroxyl species via the water-gas-shift reaction, whereas the hydrogenation of CO could only be achieved by surface hydride species on the reduced ZnCr2O4 to formyl or formate species at 373-473 K. Our study has thus shed light on the active species that control elementary reaction process of CO hydrogenation on complex oxide surfaces.

Key words: ZnCr2O4, Fourier-transformed infrared, spectroscopy, CO adsorption, Hydride, Hydroxyl