催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2637-2651.DOI: 10.1016/S1872-2067(21)64038-X

• 论文 • 上一篇    下一篇

通过直接S型电荷转移和高度改进的可见光驱动光催化效率构建3D花状O-掺杂g-C3N4-[N-掺杂Nb2O5/C]异质结

Fahim A. Qaraaha, Samah A. Mahyoubb, Abdo Hezamc, Amjad Qaraahd, Qasem A. Drmoshe, 修光利a,*()   

  1. a华东理工大学资源与环境工程学院, 国家环境保护化工过程环境风险评估与控制重点实验室, 上海 200237, 中国
    b华东理工大学化学工程学院, 化学工程国家重点实验室, 上海 200237, 中国
    c莱布尼茨-罗斯托克大学催化研究所, 罗斯托克, 德国
    d天津大学化学工程与技术学院, 天津 300350, 中国
    e法赫德国王石油与矿业大学(KFUPM)氢与储能交叉学科研究中心(IRC-HES), 沙特阿拉伯
  • 收稿日期:2022-01-28 接受日期:2022-02-15 出版日期:2022-10-18 发布日期:2022-09-30
  • 通讯作者: 修光利
  • 基金资助:
    上海市科委资助(19DZ1205001);上海市生态环境局拨款(沪环科[2021]-46)

Construction of 3D flowers-like O-doped g-C3N4-[N-doped Nb2O5/C] heterostructure with direct S-scheme charge transport and highly improved visible-light-driven photocatalytic efficiency

Fahim A. Qaraaha, Samah A. Mahyoubb, Abdo Hezamc, Amjad Qaraahd, Qasem A. Drmoshe, Guangli Xiua,*()   

  1. aState Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
    bState Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
    cLeibniz-Institute for Catalysis at the University of Rostock, 18059 Rostock, Germany
    dSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
    eInterdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
  • Received:2022-01-28 Accepted:2022-02-15 Online:2022-10-18 Published:2022-09-30
  • Contact: Guangli Xiu
  • Supported by:
    Science and Technology Commission of Shanghai Municipality(19DZ1205001);Shanghai Municipal Bureau of Ecology and Environment Grant(huhuanke [2021]-46)

摘要:

通过将两种光催化材料复合构建合适的异质结构光催化体系, 可设计出广泛应用于环境、医疗和能源领域的高效光催化剂. 近年来, S型异质结体系因可实现高效的光生载流子分离, 同时表现出较强的光氧化还原能力而备受关注.

本文通过超声和剧烈搅拌的方法构建了由2D O-掺杂g-C3N4(OCN)纳米片和3D N-掺杂Nb2O5/C(N-NBO/C)纳米花组成的新型S型异质结体系, 经过热处理后用于罗丹明B(RhB)的光催化降解. 实验结果表明, 优化的4OCN-[N-NBO/C] (OCN和N-NBO/C含量分别为40 mg和100 mg)样品表现出较好的理化特性, 其比表面积大、载流子的分离效率高、可见光吸收效率大和紧邻接触面大. EPR试验和自由基捕获实验结果表明, OCN和N-NBO/C之间形成了S型异质结. RhB光催化降解实验结果表明, 在可见光照射下, 所制备的材料表现出较好的催化性能, 催化剂光催化效率高, 稳定性好. 光催化降解性能的提高可归因于快速电荷转移、高效电荷分离、光致电荷载流子的寿命延长以及S型体系中光致电荷的高氧化还原能力. 本文还深入研究了催化剂的组成、结构、形貌以及RhB的光催化降解机制, 为相关研究提供了一定参考.

关键词: 2D/3D纳米结构, S型异质结, g-C3N4, Nb2O5, 光催化降解

Abstract:

Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental, medical, and energy applications. Recently, the construction of a step-scheme heterostructure system (hereafter called the S-scheme) has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability. Herein, a novel S-scheme heterojunction system consisting of 2D O-doped g-C3N4 (OCN) nanosheets and 3D N-doped Nb2O5/C (N-NBO/C) nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B (RhB). Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination. The enhanced performance could be attributed to the following factors: fast charge transfer, highly-efficient charge separation, extended lifetime of photoinduced charge carriers, and the high redox capability of the photoinduced charges in the S-scheme system. Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path, meanwhile, the RhB mineralization degradation pathway was also investigated using LC-MS. This study presents an approach to constructing Nb2O5-based S-scheme heterojunctions for photocatalytic applications.

Key words: 2D/3D nanostructure, S-scheme heterojunction, g-C3N4, Nb2O5, Photocatalytic degradation