催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2665-2677.DOI: 10.1016/S1872-2067(22)64124-X

• 论文 • 上一篇    下一篇

非贵金属等离子共振增强MoO3-x基S型异质结光催化苯甲醇氧化同步产氢和苯甲醛

魏英聪a, 张琪琪a, 周颖a, 马雄风a, 王乐乐a,b, 王严杰c, 洒荣建d, 龙金林a, 付贤智a, 员汝胜a,*()   

  1. a福州大学化学学院能源与环境光催化国家重点实验室, 福建福州 350108
    b江苏大学材料科学与工程学院, 江苏镇江 212013
    c东莞理工学院环境与土木工程学院, 广东东莞 523808
    d闽江大学海洋学院海洋研究所, 福建福州 350108
  • 收稿日期:2022-03-18 接受日期:2022-05-09 出版日期:2022-10-18 发布日期:2022-09-05
  • 通讯作者: 员汝胜
  • 基金资助:
    国家重点研发计划“国际科技创新合作”重点专项(2018YFE0208500);国家自然科学基金(21872033);国家自然科学基金(22102064);福州大学光催化能源与环境国家重点实验室开放课题(SKLPEE-KF202102)

Noble-metal-free plasmonic MoO3‒x-based S-scheme heterojunction for photocatalytic dehydrogenation of benzyl alcohol to storable H2 fuel and benzaldehyde

Yingcong Weia, Qiqi Zhanga, Ying Zhoua, Xiongfeng Maa, Lele Wanga,b, Yanjie Wangc, Rongjian Sad, Jinlin Longa, Xianzhi Fua, Rusheng Yuana,*()   

  1. aState Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
    bSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    cSchool of Environment & Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
    dInstitute of Oceanography, Ocean College, Minjiang University, Fuzhou 350108, Fujian, China
  • Received:2022-03-18 Accepted:2022-05-09 Online:2022-10-18 Published:2022-09-05
  • Contact: Rusheng Yuan
  • Supported by:
    National Key R&D Program of China(2018YFE0208500);National Natural Science Foundation of China(21872033);National Natural Science Foundation of China(22102064);Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,Fuzhou University(SKLPEE-KF202102)

摘要:

氢燃料具有无污染与高质量能量密度的特点使其成为一种重要的清洁能源. 通过半导体光催化过程将太阳能转化为氢能, 是应对能源与环境问题的理想方案之一. 在传统光催化产氢过程中, 光生电子可将质子还原生成氢气, 而同步产生的光生空穴一般被牺牲剂消耗. 虽然反应体系中牺牲剂的添加可以有效提升产氢速率, 但是空穴的氧化能力没有得到有效利用. 同时, 昂贵牺牲剂的使用极大制约了光催化制氢半反应的经济效益和应用前景. 通过有机物无氧脱氢反应, 同步生成氢气和高附加值有机化合物, 不仅实现了电子和空穴的同步利用, 而且提升了太阳能的转化效率. 尽管这类双功能催化剂近年来已有少量报道, 但仍存在光吸收范围窄(紫外-可见光)、掺杂贵金属或载流子分离效率低等问题. 因此, 开发廉价、高活性、全光谱吸收的催化材料及体系仍是重要且极具挑战性的任务.

本文报道了一种非贵金属(MoO3‒x)等离子共振增强的全光谱响应(200-1400 nm)Zn0.1Cd0.9S/MoO3‒x S型异质结光催化剂. 以乳酸为牺牲剂时, 该催化剂可实现高效光解水产氢, 其产氢速率高达149.2 mmol·g‒1·h‒1, 是纯Zn0.1Cd0.9S体系的6倍. 此外, 当以苯甲醇同时充当电子受体和给体时, 可见光(420-780 nm)和近红外光(780-1050 nm)激发均可驱动苯甲醇无氧脱氢, 生成苯甲醛和氢气, 从而同步有效利用光生电子与空穴. 该体系较高的催化效率主要由于: Zn0.1Cd0.9S纳米棒和MoO3‒x纳米片之间的界面紧密接触以及内建电场对光生电子转移的动力学促进; S型异质结的构建有效提升了载流子分离效率, 同时提高了光生载流子的氧化-还原能力; MoO3‒x纳米片的LSPR效应使得Zn0.1Cd0.9S/MoO3‒x复合材料具备了包含紫外-可见-近红外光区域的宽光谱吸收范围. 综上, 本文系统研究了不同激发能量下产氢过程的反应机理, 为理性设计双功能光催化氧化-还原反应体系, 实现光催化产氢与精细化学品的同步合成提供了借鉴.

关键词: Zn0.1Cd0.9S/MoO3?x S型异质结, 局域表面等离子体共振, 苯甲醇氧化, 产氢, 全光谱响应

Abstract:

Simultaneous generation of H2 fuel and value-added chemicals has attracted increasing attention since the photogenerated electrons and holes can be both employed to convert solar light into chemical energy. Herein, for realizing UV-visible-NIR light driven dehydrogenation of benzyl alcohol (BA) into benzaldehydes (BAD) and H2, a novel localized surface plasmon resonance (LSPR) enhanced S-scheme heterojunction was designed by combining noble-metal-free plasmon MoO3-x as oxidation semiconductor and Zn0.1Cd0.9S as reduction semiconductor. The photoredox system of Zn0.1Cd0.9S/MoO3-x displayed an unconventional reaction model, in which the BA served as both electron donor and acceptor. The S-scheme charge transfer mechanism induced by the formed internal electric field enhanced the redox ability of charge carriers thermodynamically and boosted charge separation kinetically. Moreover, due to the LSPR effect of MoO3‒x nanosheets, Zn0.1Cd0.9S/MoO3‒x photocatalysts exhibited strong absorption in the region of full solar spectrum. Therefore, the Zn0.1Cd0.9S/MoO3‒x composite generated H2 and BAD simultaneously via selective oxidation of BA with high production (34.38 and 33.83 mmol•g-1 for H2 and BAD, respectively) upon full solar illumination. Even under NIR light irradiation, the H2 production rate could up to 94.5 mmol•g-1•h-1. In addition, the Zn0.1Cd0.9S/MoO3-x composite displayed effective photocatalytic H2 evolution rate up to 149.2 mmol•g-1•h-1 from water, which was approximate 6 times that of pure Zn0.1Cd0.9S. This work provides a reference for rational design of plasmonic S-scheme heterojunction photocatalysts for coproduction of high-value chemicals and solar fuel production.

Key words: Zn0.1Cd0.9S/MoO3?x S-scheme heterojunction, Localized surface plasmon resonance, Benzyl alcohol oxidation, Hydrogen generation, Full-spectrum light response