催化学报 ›› 2023, Vol. 53: 1-7.DOI: 10.1016/S1872-2067(23)64524-3

• 评论 •    下一篇

CO2电催化转化迈向大规模化的挑战与展望

林莉,1, 何潇洋,1, 谢顺吉(), 王野()   

  1. 厦门大学化学化工学院, 固体表面物理化学国家重点实验室, 能源材料化学协同创新中心, 福建省能源材料科学与技术创新实验室, 醇醚酯化工清洁生产国家工程实验室, 福建厦门361005
  • 收稿日期:2023-08-24 接受日期:2023-10-03 出版日期:2023-10-18 发布日期:2023-10-25
  • 通讯作者: *电子信箱: shunji_xie@xmu.edu.cn (谢顺吉), wangye@xmu.edu.cn (王野).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    科技部国家重点研发计划项目(2022YAF1504600);国家自然科学基金项目(22121001);国家自然科学基金项目(22022201);中央高校基本科研业务费专项资金(2072022008);福建省科技计划项目(2022L3077);福建省能源材料科学与技术创新实验室科技项目(RD2020020201)

Electrocatalytic CO2 conversion toward large-scale deployment

Li Lin,1, Xiaoyang He,1, Shunji Xie(), Ye Wang()   

  1. State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2023-08-24 Accepted:2023-10-03 Online:2023-10-18 Published:2023-10-25
  • Contact: *E-mail: shunji_xie@xmu.edu.cn (S. Xie), wangye@xmu.edu.cn (Y. Wang).
  • About author:Shunji Xie (College of Chemistry and Chemical Engineering, Xiamen University) received his BSc and MSc degrees from Hunan University of China in 2008 and 2011, and obtained his PhD degree from Xiamen University in 2014. He then carried out a postdoctoral research at the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM). He is currently a full professor of Xiamen University. His research interest focuses on electrocatalysis and photocatalysis for C1 and sustainable chemistry, including CO2 reduction, CH4 oxidation, biomass conversion and ethylene glycol synthesis.
    Ye Wang (College of Chemistry and Chemical Engineering, Xiamen University) received his BSc degree from Nanjing University and PhD degree from Tokyo Institute of Technology. He then worked at Tokyo Institute of Technology, Tohoku University and Hiroshima University, and was promoted to associate professor at Hiroshima University in 2001. He became full professor of Xiamen University in August of 2001. He served as council member of International Association of Catalysis Societies and now an associate editor of ACS Catalysis. The research interest of Prof. Ye Wang’s group is catalysis for C1 and sustainable chemistry, including C−H activation and C−C coupling of C1 molecules and C−O/C−C cleavage chemistry for cellulose/lignin valorization.

    1Contributed equally to this work.

  • Supported by:
    The National Key Research and Development Program of Ministry of Science and Technology(2022YAF1504600);National Natural Science Foundation of China(22121001);National Natural Science Foundation of China(22022201);The Fundamental Research Funds for the Central Universities(2072022008);Science and Technology Project of Fujian Province(2022L3077);The Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(RD2020020201)

摘要:

全球CO2排放量持续增长, 冲击全球能源格局. CO2电催化转化为高值化学品与液体燃料是实现绿色化工和降低碳排放的有效途径. 针对催化剂和电解器的实验室研究为CO2大规模电解奠定了基础. 然而具有实用价值的全电解池CO2电解, 在工业级电流密度下的CO2转化率、反应活性与稳定性仍较低. 电极面积和数量的放大研究发现, 由于电场、流场等的复杂多场耦合引起的放大效应, 使得反应寿命、能耗等反应性能下降.

本文综述了面向CO2规模化电解的关键多尺度研究内容, 聚焦实现CO2高效转化的重要挑战和前沿研究进展, 并展望了助力实现CO2商业化应用的发展方向. 基于聚合物电解质膜并以水作为质子源的低温CO2电解路线是具有工业化应用前景的反应路线之一, 能用于制备CO、甲酸、乙烯、乙醇等C1‒C3化合物, 是当前研究重点. 膜电极(MEA)电解器容易在电极面积和数量上扩展, 是有望实现大规模部署的CO2电解装置. 目前低温CO2电解技术研究主要集中于从微观到宏观尺度优化整个电解体系, 包括催化剂活性位点调控、气体-电极-电解质界面构建、全电解池组件优化与电堆放大设计. 虽然CO2电解在多种尺度上的研究已取得了重要进展, 然而受限于反应的复杂性, 仍有许多瓶颈难以突破: (1) 对于催化剂设计, 获得具有较高单一C2+产物选择性、稳定性以及活性的催化剂仍然比较困难, 乙烯、乙醇仅能在< 300 mA cm-2的电流密度下实现>70%的选择性, 且反应稳定性不超过200 h; (2) 在稳定性测试条件下, 目前在> 200 mA cm-2的电流密度下全电解池能量转化效率不超过50%, 特别是以C2+为目标产物时大多<30%; (3) 仅有CO产物能在较小的反应面积(< 10 cm2, 大多为1 cm2)下保持> 90%的选择性稳定并运行1000 h以上, 虽然对大面积反应器结构/配置进行了优化, 但是全电池电解系统稳定运行时间仍会随着电极面积的增大而快速衰减, 因此对现有CO2电解系统的有效反应面积扩大多个数量级, 组装成电堆还存在较大困难; (4) 对于CO2电还原反应, 反应条件影响催化剂结构与状态, 当前催化剂表征条件与真实反应条件并不一致, 且难以在MEA电解器中开展各种空间尺度与时间尺度的工况表征, 限制了对反应过程中催化剂结构的获取和反应机理的有效研究.

针对CO2电解的大规模应用, 未来研究应聚焦以下方面: (1) 设计新型电解器和反应模式, 以匹配不同产物需求, 降低产物分离成本, 提高稳定性、转化率和能量转化效率; (2) 探索新反应, 包括阳极析氧反应的替代反应和阴极CO2与有机物的共还原反应, 并结合多种反应过程合成高价值产物, 提高过程经济性; (3) 发展MEA电解器中工况条件下的实时表征新技术, 并建立诊断电解系统稳定性与活性衰减的方法. 总之, 当前的CO2电催化技术仍处于快速发展阶段, 需要系统性地解决不同尺度下存在的关键科学和技术问题, 特别是反应稳定性和过程经济性的突破, 将使得CO2电解快速迈向大规模应用.

关键词: 二氧化碳转化, 电催化, 商业应用, 挑战, 展望

Abstract:

The electrocatalytic conversion of CO2 into chemicals and liquid fuels, powered by renewable energy sources, is expected to reach commercial applications. This comment outlines the research directions that focus on advancing practical deployment of CO2 electrolysis. Furthermore, the bottlenecks that limit the high-efficiency conversion of CO2 and promising approaches to overcome them are discussed.

Key words: CO2 conversion, Electrocatalysis, Commercial application, Challenge, Prospect