催化学报 ›› 2024, Vol. 61: 164-178.DOI: 10.1016/S1872-2067(24)60026-4

• 论文 • 上一篇    下一篇

光热协同驱动SrTiOx负载CuCo催化CO2-CH4和H2O共转化制备C2含氧化合物

朱彦儒a,b, 张志军a, 张健a,b,*(), 蒋双江a, 安哲a,b, 宋红艳a, 舒心a, 习卫c, 郑黎荣d, 何静a,b,*()   

  1. a北京化工大学化工资源工程国家重点实验室, 北京 100029
    b衢州资源化工创新研究院, 浙江衢州 324000
    c天津理工大学天津市先进功能多孔材料重点实验室/电子显微镜研究中心, 天津 300384
    d中国科学院高能物理研究所, 北京 100049
  • 收稿日期:2024-02-18 接受日期:2024-03-28 出版日期:2024-06-18 发布日期:2024-06-20
  • 通讯作者: * 电子信箱: hejing@buct.edu.cn (何静), zhangjian450924@buct.edu.cn (张健).
  • 基金资助:
    国家重点研发项目(2021YFB3801602);国家自然科学基金(22288102)

Photo-thermal cooperation for the conversion of CO2 and CH4 with H2O to C2 oxygenates over SrTiOx supported CuCo

Yanru Zhua,b, Zhijun Zhanga, Jian Zhanga,b,*(), Shuangjiang Jianga, Zhe Ana,b, Hongyan Songa, Xin Shua, Wei Xic, Lirong Zhengd, Jing Hea,b,*()   

  1. aState Key Laboratory of Chemical Resource Engineering, & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    bQuzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, Zhejiang, China
    cCenter for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, China
    dInstitute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-02-18 Accepted:2024-03-28 Online:2024-06-18 Published:2024-06-20
  • Contact: * E-mail: jinghe@263.net.cn (J. He), zhangjian450924@buct.edu.cn (J. Zhang).
  • Supported by:
    National Key R&D Program of China(2021YFB3801602);National Natural Science Foundation of China(22288102)

摘要:

催化转化CO2为乙醇、乙醛等高值C2含氧化合物是一个具有科学意义和经济价值的化学过程. 然而, 由于碳氧键活化难、多电子(≥10)转移过程复杂以及C-C偶联动力学缓慢等问题, 导致该过程的反应效率低. CO2因热力学稳定、动力学惰性, 其加氢活化通常是强吸热过程(如CO2活化成CO的ΔH298K = 42.1 kJ mol‒1), 因此需要在一定温度下才能获得满意的CO2转化率. 与此同时, CH4作为碳化学价态最低的化合物, 其氧化过程与CO2的还原过程可以耦合, 共同转化为高值化学品, 同样受到了广泛关注. 但CH4的活化同样需要高温等苛刻条件, 因此, 在温和条件下共转化CO2和CH4, 选择性构建高值C2含氧化合物, 是一个重要且具有挑战性的研究方向.
本文提出利用光外场和水活化策略, 即利用光解水产生的活性氢和活性氧物种, 在温和条件下实现CO2和CH4的高效、高选择性活化及共转化. 光照下, 在钛酸锶(SrTiOx)负载的具有丰富Cu-Co界面的催化剂上, 光解水产生的活性氢和活性氧物种, 分别活化CO2的碳氧键和CH4的碳氢键, 在Cu和Co位点上分别形成*CHxO和*CH3物种, 进而通过C-C偶联高效生成C2含氧化合物. 在200 °C和光照条件下, C2含氧化合物(CH3CHO和CH3CH2OH)的生成速率高达2.05 mmol g‒1 h‒1, 同时产物选择性> 86%. 同位素标记、红外光谱示踪的原位反应和催化实验结果表明, 紫外光激发下, SrTiOx上的金属位点促进了光催化水裂解, 生成活性氢和活性氧物种(该过程为整个反应的决速步骤). 活性氢物种使吸附在SrTiOx上的CO2活化并转化为CO; 随后, 在CuI/Cu0对上, CO加氢生成*CHxO中间体. 另一方面, 在Co位点上, CH4与活性氧物种发生反应, 被活化为*CH3中间体. 最后, *CHxO与*CH3两种中间体在CuCo界面处发生C-C偶联反应, 进而形成C2含氧化合物. 与传统的热催化下的CO2和CH4共转化过程相比, 光热协同策略使该反应温度降低了超过600 °C, 并且反应活化能降低了约12 kJ mol‒1, 表明光热协同策略不仅可以大幅降低反应温度, 还能极大提升反应动力学, 为强吸热反应过程提供了一条提效降耗的反应途径.
综上所述, 本工作通过构建结构精准可控的SrTiOx负载的CuCo邻近界面结构, 同时利用光解水产生的活性氢/氧物种促进CO2和CH4活化, 实现了高效定向共转化. 本文提出的“光热协同”策略为高效活化CO2制高值化学品提供了新的研究思路, 同时显著降低了能耗, 对解决强吸热催化反应高能耗问题提供了参考.

关键词: 光热协同, CO2和CH4共转化, SrTiOx负载CuCo, 水裂解, C2含氧化合物

Abstract:

Photosynthesis is a potential strategy to enable endergonic process that usually needs high-temperature in thermochemistry to supply the energy for inert-bond activation and/or strong endothermic reaction. The conversion of CO2 into value-added C2-oxygenates is a promising process to realize artificial photosynthesis, but suffers from relatively lower efficiency due to complex multi-electron (≥ 10) transfer processes and sluggish kinetics of C-C coupling. This work proposes an all-new H2O-promoted strategy for efficient production of C2 oxygenates from the concurrent activation and subsequent co-conversion of CO2 with CH4 under photo-thermal cooperation, in which photocatalytic H2O-splitting derived active hydrogen species for CO2 activation, and concomitant active oxygen species for CH4 activation. A formation rate of as high as 2.05 mmol g-1 h-1 for C2-oxygenates (CH3CHO and CH3CH2OH) in a selectivity of > 86% has been afforded over SrTiOx supported CuCo under 200 °C and ultraviolet-visible illumination. It has been revealed that SrTiOx drives photocatalytic H2O-splitting under the excitation primary from ultraviolet light, paired CuI/Cu0 sites promote the formation of *CHxO intermediate from CO2, Co sites conduct CH4-to-*CH3, and C-C coupling of *CHxO and *CH3 on adjacent Cu-Co facilitates the generation of C2-oxygenates.

Key words: Photo-thermal cooperation, Co-conversion of CO2 and CH4, SrTiOx supported Cu-Co, Water-splitting, C2-oxygenates