催化学报 ›› 2021, Vol. 42 ›› Issue (9): 1538-1552.DOI: 10.1016/S1872-2067(20)63760-3
王中明a,b, 王洪a,b, 王笑笑a,b, 陈旬a, 于岩b, 戴文新a,b,*(), 付贤智a,#(
)
收稿日期:
2020-12-02
接受日期:
2020-12-31
出版日期:
2021-09-18
发布日期:
2021-05-16
通讯作者:
戴文新,付贤智
基金资助:
Zhongming Wanga,b, Hong Wanga,b, Xiaoxiao Wanga,b, Xun Chena, Yan Yub, Wenxin Daia,b,*(), Xianzhi Fua,#(
)
Received:
2020-12-02
Accepted:
2020-12-31
Online:
2021-09-18
Published:
2021-05-16
Contact:
Wenxin Dai,Xianzhi Fu
About author:
# E-mail: xzfu@fzu.edu.cnSupported by:
摘要:
传统热催化和低温光催化体系在实际应用中都存在技术缺陷. 近些年, 人们通过将光和热耦合, 克服它们各自的局限性, 开创了光热协同催化新领域. 目前已在CO减排、CO甲烷化和VOCs降解等诸多应用领域得到应用. 当然, 随着光热催化的发展, 研究者也一直在思考光热协同的内在作用机理. 目前大多数的机理分析都是从材料本身出发, 通过研究表面反应、光吸收或金属与载体之间的电子转移行为来探讨光热协同效应. 然而, 表面反应只是多相光催化反应的其中一个步骤, 此外还包括反应物的扩散和吸附及产物的脱附和扩散, 其中反应物的吸附过程因其多变的吸附行为可能在整个反应过程中起着重要的作用. 光热协同可能通过作用于气体吸附过程来调节反应的选择性和活性, 但到目前为止, 两者之间的内在联系尚不清楚. 所以, 从反应物气体吸附行为(尤其是吸附电子转移行为)的角度深入研究光热协同效应具有重要意义.
本文在光催化CO还原和H2氧化体系中引入一定的热条件, 希望通过热驱动效应影响H2/CO吸附时的电子转移行为, 进而改变反应行为. 为简化实验附加条件, 选用常见的具有合适带隙宽度以及良好光吸收的ZnO作为研究材料, 通过水热法合成了在(100)晶面具有氧空位(VOs)的ZnO样品, 引入气敏传感系统检测不同光热条件下的H2/CO气体吸附电子转移行为, 并结合多种原位手段从物质结构和气体吸附两个角度出发, 分析光热条件下气体吸附行为变化的机理. 与我们预测一致, 在紫外光照下随着温度的升高, 光热协同作用于(002)晶面, 原位生长了锌空位(VZns), 为H2分子提供吸附位点. H2从Vos位点吸附转移到VZns上, 并导致H2(ads)从得电子转变为失电子行为(形成有利于H2氧化的定向吸附), 从而发生H2氧化反应. 对于同样吸附在高表面能(002)晶面上的CO分子来说, 光热协同效应通过抬升材料费米能级来改变其电子转移行为, CO(ads)由失电子转变为得电子行为(形成有利于CO还原的定向吸附), 并进一步被失去电子的H2(ads)还原. 此外, 还发现CO或H2的光催化氧化反应的发生只依赖于CO或H2单分子的定向活化(不考虑O2的吸附和活化), 表明其归属于E-R反应过程. 而CO的光催化还原反应需要同时满足CO和H2双分子的定向活化, 可能归属于L-H反应过程. 综上, 本文研究结果表明, 光热协同内在作用可能是通过改变ZnO材料结构, 调节反应物吸附动力学中的电子转移行为, 从而引起反应物的定向活化, 进而改变反应选择性.
王中明, 王洪, 王笑笑, 陈旬, 于岩, 戴文新, 付贤智. 通过调节反应物气体吸附电子转移行为实现热驱动ZnO光催化CO还原和H2氧化反应[J]. 催化学报, 2021, 42(9): 1538-1552.
Zhongming Wang, Hong Wang, Xiaoxiao Wang, Xun Chen, Yan Yu, Wenxin Dai, Xianzhi Fu. Thermo-driven photocatalytic CO reduction and H2 oxidation over ZnO via regulation of reactant gas adsorption electron transfer behavior[J]. Chinese Journal of Catalysis, 2021, 42(9): 1538-1552.
Fig. 1. H2 conversions in the photothermal catalytic H2 oxidation reaction (a) and CH4 yields in the CO reduction reaction (b) over the ZnO catalyst under different photothermal conditions.
Fig. 2. Gas sensitivity response of H2 (a,c) and CO (b,d) adsorption on the surface of ZnO in N2 atmosphere. (a) and (b) were measured at different temperatures under UV irradiation: (1) 25 °C, (2) 50 °C, (3) 100 °C, (4) 150 °C, and (5) 200 °C. (c) and (d) were measured under dark conditions at 150 °C. (e) Schematic diagram of the gas sensing test system.
Fig. 4. In-situ DRS spectra of the ZnO sample under different photothermal conditions. (a) at 25 °C as a function of UV irradiation time. (1) dark conditions; (2) UV irradiation for 20 min; (3) UV irradiation for 40 min, and (4) UV irradiation for 60 min. (b) Under dark and (c) UV irradiation conditions as a function of temperature. (1) 25 °C; (2) 50 °C; (3) 100 °C; (4) 150 °C.
Fig. 5. In-situ EPR spectrum of the ZnO sample under UV irradiation at 25 °C (1), 50 °C (2), 100 °C (3), and 150 °C (4). The VZns were formed in-situ under the synergistic action of photothermal conditions.
Fig. 6. In-situ UPS profiles of the ZnO sample at 25 °C (1), 50 °C (2), 100 °C (3), 150 °C (4), and 200 °C (5). (b) An enlarged view of the cutoff edge region in (a).
Fig. 7. Diagram indicating the changes in the Fermi level at different temperatures under UV irradiation. The Fermi level change assumes an “S-shaped curve” trend.
Fig. 8. In-situ DRIFT spectra of the ZnO sample after H2 adsorption for 20 min under different conditions. (a): (1) fresh catalyst; (2) at 25 °C under UV irradiation; (3) at 50 °C under UV irradiation; (4) at 100 °C under UV irradiation; (5) at 150 °C under UV irradiation. (b) In-situ DRIFT spectra of the ZnO sample at 150 °C under UV irradiation as a function of H2 adsorption time. (1) for 5 min, (2) for 10 min, (3) for 15 min, and (4) for 20 min.
Fig. 9. H2 chemisorption on the ZnO (100) (a) and (002) (b) surfaces at the different sites: (1) the H2 non-dissociative adsorption at the O site; (2) the H2 non-dissociative adsorption at the Zn site; (3) the H2 non-dissociative adsorption at the VOs or VZns sites; (4) the H2 dissociative adsorption at the VOs or VZns sites. Among them, the surface energies (Esur) of the (100) and (002) surfaces are 0.86 and 3.13 J?m-2, respectively.
Fig. 10. In-situ DRIFT spectra of the ZnO sample under different conditions (a?c). (1) ZnO prior to CO adsorption at 25 °C under UV irradiation; (2) CO adsorption for 20 min at 25 °C under UV irradiation; (3) CO adsorption for 20 min at 50 °C under UV irradiation; (4) CO adsorption for 20 min at 100 °C under UV irradiation; (5) CO adsorption for 20 min at 150 °C under UV irradiation.
Species | Pure CO (cm-1) | CO + H2 (cm-1) |
---|---|---|
υ(CO32-) | 1662, 1510, 1374, 1310 | 1376 |
υas(COO) | 1606 | 1597 |
υs(COO) | 1547 | 1339 |
δ(CH3,CH2) | 1427, 1458 | 1475 |
υas(CH3,CH2) | 3000, 2946 | 2970 |
υs(CH3,CH2) | 2904 | 2900 |
υ(HCO3-) | — | 1249 |
υ(C-O)-CH3O- | 1076, 1012 | 1058 |
Table 1 Assignment of the infrared peaks observed after adsorption of pure CO and CO + H2 on the ZnO surface.
Species | Pure CO (cm-1) | CO + H2 (cm-1) |
---|---|---|
υ(CO32-) | 1662, 1510, 1374, 1310 | 1376 |
υas(COO) | 1606 | 1597 |
υs(COO) | 1547 | 1339 |
δ(CH3,CH2) | 1427, 1458 | 1475 |
υas(CH3,CH2) | 3000, 2946 | 2970 |
υs(CH3,CH2) | 2904 | 2900 |
υ(HCO3-) | — | 1249 |
υ(C-O)-CH3O- | 1076, 1012 | 1058 |
Fig. 11. In-situ DRIFT spectra of the ZnO sample in N2 atmosphere at 25 °C (1), 50 °C (2), 100 °C (3), and 150 °C (4). The surface hydroxyl groups decreased gradually with an increase in the temperature.
Fig. 12 In-situ DRIFT spectra of the ZnO sample at 150 °C under dark and UV irradiation conditions (a?c). (1) CO + H2 adsorption for 10 min in the dark; (2) CO + H2 adsorption for 20 min in the dark; (3) CO + H2 adsorption for 10 min under UV irradiation; (4) CO + H2 adsorption for 15 min under UV irradiation; (5) CO + H2 adsorption for 20 min under UV irradiation.
Fig. 13 Photothermal synergistic effect on the (002) surface of the ZnO sample: (a) provides energy to overcome the energy barrier and enhances the lattice vibration; (b) raises the Fermi level and forms a zinc vacancy adsorption level; (c) and (d) regulates the electron transfer behavior of H2 and CO adsorption, and the further photocatalytic oxidation and reduction reactions.
|
[1] | 覃思纳, 魏笛野, 魏杰, 林嘉盛, 陈清奇, 吴元菲, 金怀洲, 张华, 李剑锋. 表面增强拉曼光谱原位捕获Pt-NiO界面水煤气变换反应中的碳酸盐中间物种[J]. 催化学报, 2022, 43(8): 2010-2016. |
[2] | 孙倩, 贾忱, 赵勇, 赵川. 单原子基催化剂用于电化学CO2还原[J]. 催化学报, 2022, 43(7): 1547-1597. |
[3] | 王春鹏, 王哲, 毛善俊, 陈志荣, 王勇. 多相催化剂活性位点的配位环境及其对催化性能的影响[J]. 催化学报, 2022, 43(4): 928-955. |
[4] | 王可, 何仕辉, 林云志, 陈旬, 戴文新, 付贤智. 氧空位修饰的暴露TiO2{001}的Ru/TiO2增强光热协同CO2甲烷化活性和稳定性[J]. 催化学报, 2022, 43(2): 391-402. |
[5] | 张博, 吴运祯, 翟潘龙, 王晨, 孙立成, 侯军刚. 铋基催化剂的合理设计和电催化二氧化碳转化[J]. 催化学报, 2022, 43(12): 3062-3088. |
[6] | 魏杰, 陈微, 周达, 蔡俊, 陈艳霞. 结构明确的Pt基电极在温和电化学条件下的表面重构[J]. 催化学报, 2022, 43(11): 2792-2801. |
[7] | 苏海胜, 常晓侠, 徐冰君. 表面增强振动光谱在电催化领域的运用: 基本原理、挑战和展望[J]. 催化学报, 2022, 43(11): 2757-2771. |
[8] | 陈亨权, 邹列, 魏笛野, 郑灵灵, 吴元菲, 张华, 李剑锋. 原位拉曼光谱与X射线吸收光谱研究能源转换电催化反应[J]. 催化学报, 2022, 43(1): 33-46. |
[9] | 魏龙福, 余长林, 杨凯, 樊启哲, 纪红兵. 光热协同催化去除挥发性有机化合物和CO的研究进展[J]. 催化学报, 2021, 42(7): 1078-1095. |
[10] | 郭玲玲, 虞静, 王伟伟, 刘家旭, 郭洪臣, 马超, 贾春江, 陈俊翔, 司锐. 负载于二氧化硅上的小尺寸氧化亚铜物种促进丙烯选择性氧化生成丙烯醛[J]. 催化学报, 2021, 42(2): 320-333. |
[11] | 郑仁垟, 谢在库. 多相催化时空演变的全生命周期表征策略[J]. 催化学报, 2021, 42(12): 2141-2148. |
[12] | 王嘉, 尤瑞, 千坤, 潘洋, 杨玖重, 黄伟新. Cl-改性对Ag/Al2O3催化剂结构及其催化C3H6-SCR和H2/C3H6-SCR反应性能的影响[J]. 催化学报, 2021, 42(12): 2242-2253. |
[13] | 李大帅, 黄誉, 李松美, 王长华, 李莹莹, 张昕彤, 刘益春. 利用光热耦合下的光电导研究TiO2光热催化还原CO2[J]. 催化学报, 2020, 41(1): 154-160. |
[14] | 卢发贵, 刘晰, 崔义, 陈立桅. 原位表征技术在异相催化中的应用[J]. 催化学报, 2019, 40(s1): 75-89. |
[15] | 陈鹏, 董帆, 冉茂希, 李佳芮. MnOx/g-C3N4光热协同催化净化NO的性能增强和反应机理[J]. 催化学报, 2018, 39(4): 619-629. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||