催化学报 ›› 2021, Vol. 42 ›› Issue (9): 1538-1552.DOI: 10.1016/S1872-2067(20)63760-3

• 论文 • 上一篇    下一篇

通过调节反应物气体吸附电子转移行为实现热驱动ZnO光催化CO还原和H2氧化反应

王中明a,b, 王洪a,b, 王笑笑a,b, 陈旬a, 于岩b, 戴文新a,b,*(), 付贤智a,#()   

  1. a福州大学能源与环境光催化国家重点实验室光催化研究所, 福建福州350108
    b福州大学生态材料先进技术重点实验室, 福建福州350108
  • 收稿日期:2020-12-02 接受日期:2020-12-31 出版日期:2021-09-18 发布日期:2021-05-16
  • 通讯作者: 戴文新,付贤智
  • 基金资助:
    国家重点研发项目(2018YFE0208500);国家自然科学基金(21872030)

Thermo-driven photocatalytic CO reduction and H2 oxidation over ZnO via regulation of reactant gas adsorption electron transfer behavior

Zhongming Wanga,b, Hong Wanga,b, Xiaoxiao Wanga,b, Xun Chena, Yan Yub, Wenxin Daia,b,*(), Xianzhi Fua,#()   

  1. aResearch Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, Fujian, China
    bKey Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, Fujian, China
  • Received:2020-12-02 Accepted:2020-12-31 Online:2021-09-18 Published:2021-05-16
  • Contact: Wenxin Dai,Xianzhi Fu
  • About author:# E-mail: xzfu@fzu.edu.cn
    * Tel/Fax: +86-591-83779083; E-mail: daiwenxin@fzu.edu.cn;
  • Supported by:
    National Key R&D Program of China(2018YFE0208500);National Natural Science Foundation of China(21872030)

摘要:

传统热催化和低温光催化体系在实际应用中都存在技术缺陷. 近些年, 人们通过将光和热耦合, 克服它们各自的局限性, 开创了光热协同催化新领域. 目前已在CO减排、CO甲烷化和VOCs降解等诸多应用领域得到应用. 当然, 随着光热催化的发展, 研究者也一直在思考光热协同的内在作用机理. 目前大多数的机理分析都是从材料本身出发, 通过研究表面反应、光吸收或金属与载体之间的电子转移行为来探讨光热协同效应. 然而, 表面反应只是多相光催化反应的其中一个步骤, 此外还包括反应物的扩散和吸附及产物的脱附和扩散, 其中反应物的吸附过程因其多变的吸附行为可能在整个反应过程中起着重要的作用. 光热协同可能通过作用于气体吸附过程来调节反应的选择性和活性, 但到目前为止, 两者之间的内在联系尚不清楚. 所以, 从反应物气体吸附行为(尤其是吸附电子转移行为)的角度深入研究光热协同效应具有重要意义.
本文在光催化CO还原和H2氧化体系中引入一定的热条件, 希望通过热驱动效应影响H2/CO吸附时的电子转移行为, 进而改变反应行为. 为简化实验附加条件, 选用常见的具有合适带隙宽度以及良好光吸收的ZnO作为研究材料, 通过水热法合成了在(100)晶面具有氧空位(VOs)的ZnO样品, 引入气敏传感系统检测不同光热条件下的H2/CO气体吸附电子转移行为, 并结合多种原位手段从物质结构和气体吸附两个角度出发, 分析光热条件下气体吸附行为变化的机理. 与我们预测一致, 在紫外光照下随着温度的升高, 光热协同作用于(002)晶面, 原位生长了锌空位(VZns), 为H2分子提供吸附位点. H2从Vos位点吸附转移到VZns上, 并导致H2(ads)从得电子转变为失电子行为(形成有利于H2氧化的定向吸附), 从而发生H2氧化反应. 对于同样吸附在高表面能(002)晶面上的CO分子来说, 光热协同效应通过抬升材料费米能级来改变其电子转移行为, CO(ads)由失电子转变为得电子行为(形成有利于CO还原的定向吸附), 并进一步被失去电子的H2(ads)还原. 此外, 还发现CO或H2的光催化氧化反应的发生只依赖于CO或H2单分子的定向活化(不考虑O2的吸附和活化), 表明其归属于E-R反应过程. 而CO的光催化还原反应需要同时满足CO和H2双分子的定向活化, 可能归属于L-H反应过程. 综上, 本文研究结果表明, 光热协同内在作用可能是通过改变ZnO材料结构, 调节反应物吸附动力学中的电子转移行为, 从而引起反应物的定向活化, 进而改变反应选择性.

关键词: 光热协同, 电子转移行为, 吸附动力学控制, 原位表征, 费米能级

Abstract:

Photothermal catalysis is a widely researched field in which the reaction mechanism is usually investigated based on the photochemical behavior of the catalytic material. Considering that the adsorption of reactants is essential for catalytic reactions to occur, in this study, the synergistic effect of photothermal catalysis is innovatively elucidated in terms of the electron transfer behavior of reactant adsorption. For the H2 + O2 or CO + H2 reaction systems over a ZnO catalyst, UV irradiation at 25 °C or heat without UV irradiation did not cause H2 oxidation or CO reduction; only photothermal conditions (100 or 150 °C + UV light) initiated the two reactions. This result is related to the electron transfer behavior associated with the adsorption of CO or H2 on ZnO, in which H2 or CO that lost an electron could be oxidized by O2 or hydroxyls. However, the electron-accepting CO could be reduced by the electron-donating H2 into CH4 under photothermal conditions. Based on the in-situ characterization and theoretical calculation results, it was established that the synergistic effect of the photothermal conditions acted on the (002) crystal surface of ZnO to stimulate the growth of zinc vacancies, which resulted in the formation of defect energy levels, adsorption sites, and an adjusted Fermi level. As a result, the electron transfer behavior between adsorbed CO or H2 and the crystal surface varied, which further affected the photocatalytic behavior. The results show that the effect of photothermal synergy may not only produce the expected kinetic energy, but more importantly, produce energy that can change the activation mode of the reactant gas. This study provides a new understanding of the CO catalytic oxidation and reduction processes over semiconductor materials.

Key words: Photothermal synergy, Electron transfer behavior, Adsorption kinetic control, In-situ characterization, Fermi level