催化学报 ›› 2022, Vol. 43 ›› Issue (7): 1547-1597.DOI: 10.1016/S1872-2067(21)64000-7
收稿日期:
2021-09-27
接受日期:
2021-12-14
出版日期:
2022-07-18
发布日期:
2022-05-20
通讯作者:
赵川
Qian Sun, Chen Jia, Yong Zhao, Chuan Zhao()
Received:
2021-09-27
Accepted:
2021-12-14
Online:
2022-07-18
Published:
2022-05-20
Contact:
Chuan Zhao
Supported by:
摘要:
以可再生能源为动力的电化学CO2还原反应(CO2RR)可以将CO2转化为高附加值化学品, 成为解决环境问题和能源危机的一种有前途的方法. 单原子催化剂(SAC)是一种分散在载体上的孤立的单金属原子催化剂, 由于具有强单原子-载体相互作用、最大的金属利用率和较好的催化活性, 在CO2RR中表现出优异的性能. 然而, SAC存在颗粒团聚、金属负载量低、难以大规模生产等问题. 此外, 作为另一类单原子基催化剂, 分子催化剂由金属离子和配体分子组成, 具有与金属氮碳(M-N-C)类似的金属氮(M-N)活性中心, 由于其明确的活性位点以及活性位点的空间和电子性质的可调性, 其表现出高活性. 然而, 分子催化剂存在活性、选择性和稳定性不够高、导电性较差及容易聚集等问题. 目前, 许多研究工作致力于克服SAC和分子催化剂的上述问题, 以获得高性能的CO2RR催化剂, 但关于其制备、应用和表征的系统总结的综述较少. 基于此, 本文总结了近年来用于制备CO2RR的SAC的先进策略, 包括湿化学方法(缺陷工程、空间限制、配位设计)、其他合成方法和大规模生产SAC. 此外, 讨论了SACs和分子催化剂在CO2RR上的电化学应用, 包括产物的法拉第效率、分电流密度以及催化剂的稳定性. 简要评述了在非原位和原位/操作条件下的表征技术, 有助于探索活性位点和理解CO2RR催化机理. 最后, 指出了单原子基催化剂(SACs、分子催化剂)未来的发展方向.
孙倩, 贾忱, 赵勇, 赵川. 单原子基催化剂用于电化学CO2还原[J]. 催化学报, 2022, 43(7): 1547-1597.
Qian Sun, Chen Jia, Yong Zhao, Chuan Zhao. Single atom-based catalysts for electrochemical CO2 reduction[J]. Chinese Journal of Catalysis, 2022, 43(7): 1547-1597.
Half-cell reaction | Standard potentials (V vs. SHE) |
---|---|
2H+ + 2e- → H2 | -0.42 |
CO2 + 2H+ + 2e-→ HCOOH | -0.61 |
CO2 + 2H+ + 2e- → CO + H2O | -0.52 |
CO2 + 4H+ + 4e- → HCHO + H2O | -0.51 |
CO2 + 6H+ + 6e- → CH3OH + H2O | -0.38 |
CO2 + 8H+ + 8e- → CH4 + 2H2O | -0.24 |
2CO2 + 12H+ + 12e- → C2H4 + 4H2O | -0.34 |
2CO2 + 12H+ + 12e- → C2H5OH + 3H2O | -0.33 |
CO2 + e- → CO2*- | -1.9 |
Table 1 Standard potentials of CO2 reaction in aqueous solutions (V vs. SHE) at 1.0 atm and 25 °C, calculated according to the standard Gibbs energies of the reactants in reactions.
Half-cell reaction | Standard potentials (V vs. SHE) |
---|---|
2H+ + 2e- → H2 | -0.42 |
CO2 + 2H+ + 2e-→ HCOOH | -0.61 |
CO2 + 2H+ + 2e- → CO + H2O | -0.52 |
CO2 + 4H+ + 4e- → HCHO + H2O | -0.51 |
CO2 + 6H+ + 6e- → CH3OH + H2O | -0.38 |
CO2 + 8H+ + 8e- → CH4 + 2H2O | -0.24 |
2CO2 + 12H+ + 12e- → C2H4 + 4H2O | -0.34 |
2CO2 + 12H+ + 12e- → C2H5OH + 3H2O | -0.33 |
CO2 + e- → CO2*- | -1.9 |
Fig. 2. Defect engineering strategy to prepare SACs for CO2RR. (a) Illustration for the synthesis of Ni-N3-V. Reprinted from Ref. [59] with permission. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) Scheme showing the synthesis of Ni-N-MEGO. Reprinted from Ref. [36] with permission. Copyright 2018, Elsevier B.V. (c) Schematic illustration of transforming multiwalled CNTs into Fe-N/CNT@GNR. (d) Structural evolution from CNTs to CNT@GNR to GNR by adjusting KMnO4:CNT mass ratios. (e) TEM images for Fe-N/CNT (e1), Fe-N/CNT@GNR-1 (e2), Fe-N/CNT@GNR-2 (e3), FeN/CNT@GNR-3 (e4), and Fe-N/GNR (e5). Scale bar: 100 nm. (c?e5) Reprinted from Ref. [62] with permission. Copyright 2020, American Chemical Society. (f) Schematic illustration for the formation and structures of Ni-SAs@FNC and Ni-NPs@NC. (g) Calculated Gibbs free energy diagrams for CO2-to-CO conversion on different catalysts. (h) The difference between the calculated limiting potentials for CO2 reduction and H2 evolution. (f?h) Reprinted from Ref. [63] with permission. Copyright 2021, Elsevier.
Fig. 3. Spatial confinement strategy to prepare SACs for CO2RR. (a) Scheme of the formation of Ni SAs/N-C. Reprinted from Ref. [16] with permission. Copyright 2017, American Chemical Society. (b) Schematic views of the fabrication of Ni5-PTF-1000 catalyst with atomically isolated nickel sites from PTFZnNi5 via spatial sites separation strategy (top) and the Ni100-PTF-1000 with Ni NPs from PTF-Ni100 (bottom). Reprinted from Ref. [66] with permission. Copyright 2021, American Chemical Society. (c) Schematic illustration of the synthesis of M-N-C catalysts. Reprinted from Ref. [67] with permission. Copyright 2018, American Chemical Society. (d) Schematic preparation illustration of CoPc©Fe-N-C. Reprinted from Ref. [68] with permission. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) High resolution STEM image of Co-HNC. (f) HAADF-STEM images of Co-HNC. Part of Co single atoms is marked with red circles. (g) Top-view and side-view of CO2 molecule adsorbed on Co-C2N2 sites with different configurations. (e?g) Reprinted from Ref. [71] with permission. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 4. Coordination strategy to prepare SACs for CO2RR. (a) Materials model and a schematic local structure. Reprinted from Ref. [77] with permission. Copyright 2017, Springer Nature. (b) Scheme for the synthesis of Ni SAs/NCNTs. Reprinted from Ref. [79] with permission. Copyright 2019, Elsevier. (c) Synthetic route towards single-atom FeN4 and FeN5 catalysts. Reprinted from Ref. [73] with permission. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Schematic illustration to prepare Co-N5/HNPCSs. Reprinted from Ref. [58] with permission. Copyright 2018, American Chemical Society. (e) The formation process of Co-N4 and Co-N2. Reprinted from Ref. [87] with permission. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 5. Other strategies to prepare SACs for CO2RR. (a) Scheme of the formation of H-CPs. (b) Cross-sectional view SEM of H-CPs. (a,b) Reprinted from Ref. [93] with permission. Copyright 2018 Elsevier Inc. (c) The transformation of Ni NPs into Ni single atoms (SAs). (d) aberration corrected high-angle annular dark-field scanning TEM atomic image (the white dashed circles indicate the pores which are produced by Ni NPs during the thermal diffusion process). (c,d) Reprinted from Ref. [94] with permission. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) Schematic illustration of the fabrication process of Sn modified N-doped carbon nanofiber electrocatalysts for HCOOH and CO production. (f) SEM image of Sn-CF1000 composite. (e,f) Reprinted from Ref. [25] with permission. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 6. Large-scale synthesis of SACs for CO2RR. (a) The universal synthesis procedure. Metal single-atom catalysts (M-SACs) are prepared in two steps. Reprinted from Ref. [105] with permission. Copyright 2019, Nature. (b) Schematic of Synthetical Procedure of Ni-NCB. Reprinted from Ref. [106] with permission. Copyright 2019, Elsevier. (c) Schematic illustration of the synthesis of Ni-SA/NC. Reprinted from Ref. [108] with permission. Copyright 2020, Elsevier Ltd. (d) Synthesis procedure of CuSAs/THCF: I, adsorption of Cu ions; II, electrospinning of polymer fibers; III, carbonization and etching. Reprinted from Ref. [110] with permission. Copyright 2019, American Chemical Society. (e) Scheme illustration for large-scale synthesis of the single-atom Snδ+ on N-doped graphene. Reprinted from Ref. [111] with permission. Copyright 2019, American Chemical Society.
Material | Electrolyte | Cell | E/V vs. RHE | FE/% | j/(mA cm-2) | Stability/h | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NiSA-NWC | 0.5 mol/L NaHCO3 | H-cell | -1.6 vs. Ag/AgCl | 95 | 15 mA cm-2 @-2 V vs. Ag/AgCl | 2 | [ | |||||||||
Ni/NCTs-50 | 0.5 mol/L KHCO3 | H-cell | -0.6, -1.0 | 98 | 34.3 mA cm-2 @-1 V | 20 | [ | |||||||||
NiSA-N2-C | 0.5 mol/L KHCO3 | H-cell | -0.8 | 98 | — | 10 | [ | |||||||||
Ni-N-C | 0.5 mol/L KHCO3 | H-cell | -0.5, -0.9 | 90 | 56 mA cm-2 @-1 V | — | [ | |||||||||
Ni-PACN | 0.1 mol/L KHCO3 | H-cell | -0.7, -1.1 | > 95 | 21 mA cm-2 @-1.1 V | — | [ | |||||||||
Ni-N-CNSs | 0.1mol/L KHCO3 | H-cell | -0.85 | 97.1 | 3.1 | 25 | [ | |||||||||
Ni-N-C | 0.5 mol/L KHCO3 | H-cell | -0.9 | 71.9 | 10.48 | 60 | [ | |||||||||
Ni-N4-C | 0.5 mol/L KHCO3 | H-cell | -0.81 | 99 | 28.6 | — | [ | |||||||||
Ni-N4-CNT | 0.5 mol/L KHCO3 | H-cell | -0.9 | 97 | 57.1 | 30 | [ | |||||||||
Ni-N-C | 1 mol/L KHCO3 | H-cell | -0.73 | 98 | ~71 | 0.2 | [ | |||||||||
Ni-N-CNT | 0.5 mol/L KHCO3 | H-cell | -0.7 | 91.3 | 23.5 | — | [ | |||||||||
Ni-N-MEGO | 0.5 mol/L KHCO3 | H-cell | -0.7 | 92.1 | 26.8 | 21 | [ | |||||||||
Ni-N-Graphene | 0.5 mol/L KHCO3 | H-cell | -0.68 | 92 | 10.2 | — | [ | |||||||||
Ni-N-Gr | 0.1 mol/L KHCO3 | H-cell | -0.8 | 90 | — | 5 | [ | |||||||||
SANi-GO | 0.5 mol/L KHCO3 | H-cell | -0.63 | 96.5 | 8.3 | 50 | [ | |||||||||
Ni-NG | 0.5 mol/L KHCO3 | H-cell | -0.62 | 95 | ~11 | 20 | [ | |||||||||
A-Ni-NSG | 0.5 mol/L KHCO3 | H-cell | -0.8 | ~90 | 22.5 mA cm-2 @-0.72 V | 100 | [ | |||||||||
Ni-CNT-CC | 0.5 mol/L KHCO3 | H-cell | -0.65 | 99 | 32.3 | 100 | [ | |||||||||
Ni-CNT-CONH | 0.5 mol/L KHCO3 | H-cell | -0.65 | 98 | 18.6 | — | [ | |||||||||
Ni-CNT-PP | 0.5 mol/L KHCO3 | H-cell | -0.65 | 96 | 13.4 | — | [ | |||||||||
Ni-N-RGO | 0.5 mol/L KHCO3 | H-cell | -0.8 | 97 | 5 mA cm-2 @-0.71 V | — | [ | |||||||||
Ni-SA-NCs | 0.5 mol/L KHCO3 | H-cell | -0.8 | 99 | 50 mA cm-2 @-1 V | 9 | [ | |||||||||
Ni-NCB | 0.5 mol/L KHCO3 | H-cell | -0.681 | ~99 | 74 | 24 | [ | |||||||||
Ni-N-C | 0.1 mol/L KHCO3 | H-cell | -0.78 | 85 | — | — | [ | |||||||||
Ni-SAC | 0.1 mol/L KHCO3 | H-cell | -1.2 | 98.9 | — | 20 | [ | |||||||||
NiSA-N2-C | 0.5 mol/L KHCO3 | H-cell | -0.8 | 98 | — | 10 | [ | |||||||||
NiSA-NGA | 0.5 mol/L KHCO3 | H-cell | -0.8 | 90.2 | — | 6 | [ | |||||||||
Ni-N3-V | 0.5 mol/L KHCO3 | H-cell | -0.9 | 90 | 65 | 14 | [ | |||||||||
NiSA/PCFM | 0.5 mol/L KHCO3 | H-cell | -0.7 | 96 | 56.1 mA cm-2 @-1 V | 120 | [ | |||||||||
A-Ni-NSG | 0.5 mol/L KHCO3 | H-cell | -0.5 | 97 | — | 100 | [ | |||||||||
NiN-GS | 0.1 mol/L KHCO3 | H-cell | -0.8 | 93 | — | — | [ | |||||||||
SANi-GO | 0.5 mol/L KHCO3 | H-cell | -0.63 | 96.5 | 8.3 | 50 | [ | |||||||||
Ni SAC | 0.5 mol/L KHCO3 | H-cell | -0.65 | 95.2 | >15 | 8 | [ | |||||||||
NiIMP/NC923 | 0.1 mol/L KHCO3 | H-cell | -0.6 | 82 | — | — | [ | |||||||||
NiNOMC | 0.1 mol/L KHCO3 | H-cell | -0.9 | 93.3 | 31.55 mA cm-2 @-1.30 V | 10 | [ | |||||||||
SE-Ni SAs@PNC | 0.5 mol/L KHCO3 | H-cell | -1 | 88 | 18.3 | 60 | [ | |||||||||
Ni-N-C | 0.5 mol/L KHCO3 | H-cell | -0.77 | 92 | ∼7.5 | 12 | [ | |||||||||
Ni-N | 0.1 mol/L KHCO3 | H-cell | -0.6 | 82 | — | 5 | [ | |||||||||
SA-Ni/N-CS | 0.5 mol/L KHCO3 | H-cell | -0.8 | 95.1 | — | 24 | [ | |||||||||
Ni-N-C | 0.1 mol/L KHCO3 | H-cell | -0.8 | 94 | 4.6 mA cm-2 @-0.9 V | — | [ | |||||||||
Ni-SAC | 0.5 mol/L KHCO3 | H-cell | -0.9 | 95 | — | 30 | [ | |||||||||
NiNPIC | 0.5 mol/L KHCO3 | H-cell | -0.54 | 95.1 | 10.2 | 24 | [ | |||||||||
Ni/NC | 0.1 mol/L KHCO3 | H-cell | -0.69 | 92.3 | 4 mA cm-2 @-0.8 V | 9 | [ | |||||||||
NiNG-S | 0.5 mol/L KHCO3 | H-cell | -0.8 | 97 | 40.3 mA cm-2 @-0.9 V | 2000 s | [ | |||||||||
SA-NiNG-NV | 0.5 mol/L KHCO3 | H-cell | -0.8 | 96 | 32.5 mA cm-2 @-1 V | 20 | [ | |||||||||
NiPS3 | 0.5 mol/L KHCO3 | H-cell | -0.8 | 95 | 7.8 | 16 | [ | |||||||||
Ni-N-C Fe-N-C | 0.5 mol/L KHCO3 0.5 mol/L KHCO3 | H-cell H-cell | ∼-0.6 V -0.4, -0.5 | > 95 > 90 | 11 10 mA cm-2 @-0.7 V | — — | [186] [ | |||||||||
Materials | Electrolyte | Cell | E/V vs. RHE | FE/% | j/(mA cm-2) | Stability/h | Ref. | |||||||||
Fe-N/CNT@GNR | 0.1 mol/L KHCO3 | H-cell | -0.65 | 96 | 22.6 | 5 | [ | |||||||||
Fe/ZIF-8 | 0.1 mol/L KHCO3 | H-cell | -0.73 | 85 | 3.7 | 2 | [ | |||||||||
Fe-SA/NCS-X | 0.5 mol/L KHCO3 | H-cell | -0.45 | 87 | 10.48 mA cm-2 @-0.89 V | 10 | [ | |||||||||
C-AFC©ZIF-8 | 0.1 mol/L KHCO3 | H-cell | -0.43 | 93 | 10 | — | [ | |||||||||
Fe-N-C | 0.1 mol/L NaHCO3 | H-cell | -0.6 | 91 | 7.5 | 6 | [ | |||||||||
FexN@Fe-N-C | 0.5 mol/L KHCO3 | H-cell | -0.53 | 95 | 4.71 | 24 | [ | |||||||||
Fe-N4-graphene | 0.1 mol/L KHCO3 | H-cell | -0.6 | ~80 | ~2.5 | 10 | [ | |||||||||
Fe-N-C | 0.1 mol/L KHCO3 | H-cell | -0.6 | 85 | 5 | — | [ | |||||||||
Fe-N-PC | 0.5 mol/L KHCO3 | H-cell | -0.49 | ∼90 | 11.44 | 24 | [ | |||||||||
Fe-CN | 0.1 mol/L KHCO3 | H-cell | -0.5 | 94 | — | 12 | [ | |||||||||
Fe-N5 | 0.1 mol/L KHCO3 | H-cell | -0.46 | 97 | — | 24 | [ | |||||||||
Fe-N-C | 0.5 mol/L KHCO3 | H-cell | -0.53 | 95 | 1.9 | — | [ | |||||||||
Fe-N-C | 0.1 mol/L Na2SO4 | H-cell | -0.6 | 90 | 2.5 | 6 | [ | |||||||||
Fe-N4/CF | 0.5 mol/L KHCO3 | H-cell | -0.5 | 94.9 | — | 60 | [ | |||||||||
Fe-N4-C | 0.1 mol/L KHCO3 | H-cell | -0.58 | 93 | 2.8 | 20 | [ | |||||||||
Fe-SA | 0.1 mol/L KHCO3 | H-cell | -0.58 | 90 | — | — | [ | |||||||||
Fe-N-C | 0.1 mol/L KHCO3 | H-cell | -1 V vs. NHE | 80 | — | — | [ | |||||||||
Fe-SAC/NPC | 0.5 mol/L KHCO3 | H-cell | overpotential 0.23 V | 97 | 5 | 24 | [ | |||||||||
Fe-CON400-400 | 0.1 mol/L NaHCO3 | H-cell | -0.58 to -0.87 | 100 | 10.23 mA cm-2 @-0.83 V | 12 h @-0.83 V | [ | |||||||||
H2-FeN4/C | 0.1 mol/L NaHCO3 | H-cell | -0.6 | 97 | — | 24 | [ | |||||||||
Co-N-C | 0.5 mol/L KHCO3 | H-cell | -1 | 80 | 72 | — | [ | |||||||||
Co-N2-C | 0.5 mol/L KHCO3 | H-cell | -0.52 | 94 | 18.1 | 60 | [ | |||||||||
Co-N2-carbon spheres | 0.2 mol/L KHCO3 | H-cell | -0.73, -0.79 | 99 | 6.2 | 10 | [ | |||||||||
Co@CoNC900 | 0.1 mol/L KHCO3 | H-cell | -0.6 | 58 | ~10 mA cm-2 @-0.8 V | 12 | [ | |||||||||
Cu-N2/GN | 0.1 mol/L KHCO3 | H-cell | -0.5 | 81 | 10 mA cm-2 @-0.75 V | 10 | [ | |||||||||
Cu-S1N3/Cux | 0.1 mol/L KHCO3 | H-cell | -0.65 | 100 | 3.3 | — | [ | |||||||||
Cu-APC | 0.2 mol/L NaHCO3 | H-cell | -0.78 | 92 | 18.74 mA cm-2 @-0.98 V | 3 | [ | |||||||||
Sn-NOC | 0.1 mol/L KHCO3 | H-cell | -0.7 | 94 | 13.9 | 8 | [ | |||||||||
Sn/N-C | 0.5 mol/L KHCO3 | H-cell | -0.6 | 91 | 1.75 | 24 | [ | |||||||||
Cu20Sn1 | Catholyte: 0.5 mol/L KHCO3 Anolyte: 1 mol/L KOH | H-cell | -1 | 95.3 | 12.5 | 10 | [ | |||||||||
ZnN4 | 0.5 mol/L KHCO3 | H-cell | -0.43 | 95 | 4.8 | 75 | [ | |||||||||
Bi SAs/NC | 0.1 mol/L NaHCO3 | H-cell | -0.5 | 97 | 3.9 | 4 | [ | |||||||||
Sb-NC | 0.1 mol/L NaHCO3 | H-cell | -0.9 | 82 | 2.4 | 24 | [ | |||||||||
Y1/NC | 0.5 mol/L KHCO3 | H-cell | -0.58 | 88.3 | 1.05 mA cm-2 @-0.78 V | 12 | [ | |||||||||
Sc1/NC | 0.5 mol/L KHCO3 | H-cell | -0.68 | 81.3 | 1.43 mA cm-2 @-0.78 V | 12 | [ | |||||||||
Ag2-G | 0.5 mol/L KHCO3 | H-cell | -0.7 | 93.4 | 11.87 | 36 | [ | |||||||||
Ag1-N3/PCNC | 0.1 mol/L KHCO3 | H-cell | -0.37 | 95 | 7.6 mA cm-2 @-0.55 V | 40 | [ | |||||||||
Ni-Zn-N6-C | 0.5 mol/L KHCO3 | H-cell | -0.8 | 99 | ≈20.23 mA cm-2 at -0.9 V | 28 | [ | |||||||||
Ni/Fe-N-C | 0.5 mol/L KHCO3 | H-cell | -0.7 | 98 | 9.5 | 30 | [ | |||||||||
(Cl,N)-Mn/G (Cl,N)-Mn/G (Cl,N)-Mn/G (Cl,N)-Mn/G (Cl,N)-Mn/G (Cl,N)-Mn/G | 0.5 mol/L KHCO3 0.5 mol/L KHCO3 0.5 mol/L KHCO3 0.5 mol/L KCl 0.5 mol/L Na2SO4 0.5 mol/L K2SO4 | H-cell H-cell H-cell H-cell H-cell H-cell | -0.6 -0.5 -0.7 -0.5 -0.6 -0.6 | 97 94 90 95 ~95 95 | 9.2 9.4 12.3 — — — | 12 12 12 12 12 12 | [ [ [ [ [ [ | |||||||||
Materials | Electrolyte | Cell | E/V vs. RHE | FE/% | j/(mA cm-2) | Stability/h | Ref. | |||||||||
Fe1-Ni1-N-C | 0.5 mol/L KHCO3 | H-cell | -0.5 | 96.2 | 2.4 | 10 | [ | |||||||||
A-Ni@CMK | 0.5 mol/L KHCO3 | H-cell | -0.7 | 95 | 51 mA cm-2 @-0.8 V | 10 | [ | |||||||||
NiSAs/FN-CNSs | 0.5 mol/L KHCO3 | H-cell | -0.8 | 99.8 | 36.1 mA cm-2 @-1.1 V | 50 | [ | |||||||||
Mg-C3N4 | 0.5 mol/L KHCO3 | H-cell | -1.178 | ≥90 | 32 | 4.2 | [ | |||||||||
ZrO2@Ni-NC | 0.5 mol/L KHCO3 1 mol/L KHCO3 | H-cell Flow cell | -0.3 -1.58 | 98.6 96.8 | 15.6 mA cm-2 @-1 V 200 | 12 h @-1 V 3 | [ | |||||||||
Ni-N-C | 1 mol/L KHCO3 | Flow-cell | -0.81 | ~85 | 200 | 10 | [ | |||||||||
A-Ni@CMK | 1 mol/L KOH | Flow cell | -0.5 | 100 | 366 mA cm-2 @-0.8 V | 5 | [ | |||||||||
Mg-C3N4 | 1 mol/L KOH | Flow cell | — | ≥90 | 300 | 4.2 | [ | |||||||||
Ni-N/C | 1 mol/L KOH | Flow cell | -0.9 | 89.3 | 447.6 mA cm-2 @-1 V vs. RHE | 6 h @-1 V vs. RHE | [ | |||||||||
CNNi-700 | 1 mol/L KOH | Flow cell | -0.93 | 97 | 223 | 120 | [ | |||||||||
CA/N-Ni aerogel | 1 mol/L KHCO3 | Flow cell | -0.8 | 98 | 273 | 12 | [ | |||||||||
Ni-N-C | 0.5 mol/L KHCO3 1 mol/L KOH 3 mol/L KI + 1 mol/L KOH | Flow cell Flow cell Flow cell | -0.93 -0.61 -0.51 | 97 93 98 | 152 67 206 | 17 h @-0.75 V 17 h @-0.75 V 17 h @-0.75 V | [ | |||||||||
Ni-N-Graphene shell | 0.5 mol/L KHCO3 | Flow cell | -0.76 | ~97 | ~60 | 20 | [ | |||||||||
H-CPs | 0.5 mol/L KHCO3 | Flow cell | -1.2 | 90.8 | 60.11 | 40 | [ | |||||||||
CoSA/HCNFs | 0.1 mol/L KHCO3 | Flow cell | -0.9 | 92 | 211 | 50 | [ | |||||||||
Fe3+-N-C | 0.5 mol/L KHCO3 | Flow cell | -0.45 | 90 | 94 | 12 | [ | |||||||||
Ni-N-C | 1 mol/L KHCO3 | Flow cell | -1 | ~90 | >200 | 20 h @700 mA/cm2 | [ | |||||||||
Ni-N4‒xCx active sites | 1 mol/L KOH | Flow cell | ~-0.25 | 99.4 | 300 | 6 h @100 mA/cm2 | [ | |||||||||
SA Ni-NC | 0.1 mol/L KOH + 0.5 mol/L K2(SO)4 | Flow cell | -1.15 | ~ 100 | 170 | — | [ | |||||||||
NiSAs/FN-CNSs | Catholyte: 2.0 mol/L KHCO3 Anolyte: 2.0 mol/L glycerol in 2.0 mol/L KOH | Flow cell | 2.2 | ~90 | 175 mA cm-2 @2.5 V | 400 | [ | |||||||||
NiSA/PCFM | 0.5 mol/L KHCO3 | Flow cell | -1.2 -1.1 | 83 88 | 336.5 308.4 | 120 h @-1 V | [ | |||||||||
Ni-SA-NCs | — | MEA | -2.9 3 | 99 | ~300 380 | 9 h @-2.6 V | [ | |||||||||
Ni-N-C | 0.5 mol/L KOH | MEA | 3 | >94 | 225 | — | [ | |||||||||
Ni-N/C | 0.1 mol/L KHCO3 | MEA | -3 | 100 | 299.1 | — | [ | |||||||||
Fe/Cu-N-C | 0.1 mol/L KHCO3 | Electrochemical hydrogen pump reactor | -0.8 | 99.2 | 12.91 | 60 | [ |
Table 2 Summary of the performances of metal SACs for CO2RR toward CO.
Material | Electrolyte | Cell | E/V vs. RHE | FE/% | j/(mA cm-2) | Stability/h | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NiSA-NWC | 0.5 mol/L NaHCO3 | H-cell | -1.6 vs. Ag/AgCl | 95 | 15 mA cm-2 @-2 V vs. Ag/AgCl | 2 | [ | |||||||||
Ni/NCTs-50 | 0.5 mol/L KHCO3 | H-cell | -0.6, -1.0 | 98 | 34.3 mA cm-2 @-1 V | 20 | [ | |||||||||
NiSA-N2-C | 0.5 mol/L KHCO3 | H-cell | -0.8 | 98 | — | 10 | [ | |||||||||
Ni-N-C | 0.5 mol/L KHCO3 | H-cell | -0.5, -0.9 | 90 | 56 mA cm-2 @-1 V | — | [ | |||||||||
Ni-PACN | 0.1 mol/L KHCO3 | H-cell | -0.7, -1.1 | > 95 | 21 mA cm-2 @-1.1 V | — | [ | |||||||||
Ni-N-CNSs | 0.1mol/L KHCO3 | H-cell | -0.85 | 97.1 | 3.1 | 25 | [ | |||||||||
Ni-N-C | 0.5 mol/L KHCO3 | H-cell | -0.9 | 71.9 | 10.48 | 60 | [ | |||||||||
Ni-N4-C | 0.5 mol/L KHCO3 | H-cell | -0.81 | 99 | 28.6 | — | [ | |||||||||
Ni-N4-CNT | 0.5 mol/L KHCO3 | H-cell | -0.9 | 97 | 57.1 | 30 | [ | |||||||||
Ni-N-C | 1 mol/L KHCO3 | H-cell | -0.73 | 98 | ~71 | 0.2 | [ | |||||||||
Ni-N-CNT | 0.5 mol/L KHCO3 | H-cell | -0.7 | 91.3 | 23.5 | — | [ | |||||||||
Ni-N-MEGO | 0.5 mol/L KHCO3 | H-cell | -0.7 | 92.1 | 26.8 | 21 | [ | |||||||||
Ni-N-Graphene | 0.5 mol/L KHCO3 | H-cell | -0.68 | 92 | 10.2 | — | [ | |||||||||
Ni-N-Gr | 0.1 mol/L KHCO3 | H-cell | -0.8 | 90 | — | 5 | [ | |||||||||
SANi-GO | 0.5 mol/L KHCO3 | H-cell | -0.63 | 96.5 | 8.3 | 50 | [ | |||||||||
Ni-NG | 0.5 mol/L KHCO3 | H-cell | -0.62 | 95 | ~11 | 20 | [ | |||||||||
A-Ni-NSG | 0.5 mol/L KHCO3 | H-cell | -0.8 | ~90 | 22.5 mA cm-2 @-0.72 V | 100 | [ | |||||||||
Ni-CNT-CC | 0.5 mol/L KHCO3 | H-cell | -0.65 | 99 | 32.3 | 100 | [ | |||||||||
Ni-CNT-CONH | 0.5 mol/L KHCO3 | H-cell | -0.65 | 98 | 18.6 | — | [ | |||||||||
Ni-CNT-PP | 0.5 mol/L KHCO3 | H-cell | -0.65 | 96 | 13.4 | — | [ | |||||||||
Ni-N-RGO | 0.5 mol/L KHCO3 | H-cell | -0.8 | 97 | 5 mA cm-2 @-0.71 V | — | [ | |||||||||
Ni-SA-NCs | 0.5 mol/L KHCO3 | H-cell | -0.8 | 99 | 50 mA cm-2 @-1 V | 9 | [ | |||||||||
Ni-NCB | 0.5 mol/L KHCO3 | H-cell | -0.681 | ~99 | 74 | 24 | [ | |||||||||
Ni-N-C | 0.1 mol/L KHCO3 | H-cell | -0.78 | 85 | — | — | [ | |||||||||
Ni-SAC | 0.1 mol/L KHCO3 | H-cell | -1.2 | 98.9 | — | 20 | [ | |||||||||
NiSA-N2-C | 0.5 mol/L KHCO3 | H-cell | -0.8 | 98 | — | 10 | [ | |||||||||
NiSA-NGA | 0.5 mol/L KHCO3 | H-cell | -0.8 | 90.2 | — | 6 | [ | |||||||||
Ni-N3-V | 0.5 mol/L KHCO3 | H-cell | -0.9 | 90 | 65 | 14 | [ | |||||||||
NiSA/PCFM | 0.5 mol/L KHCO3 | H-cell | -0.7 | 96 | 56.1 mA cm-2 @-1 V | 120 | [ | |||||||||
A-Ni-NSG | 0.5 mol/L KHCO3 | H-cell | -0.5 | 97 | — | 100 | [ | |||||||||
NiN-GS | 0.1 mol/L KHCO3 | H-cell | -0.8 | 93 | — | — | [ | |||||||||
SANi-GO | 0.5 mol/L KHCO3 | H-cell | -0.63 | 96.5 | 8.3 | 50 | [ | |||||||||
Ni SAC | 0.5 mol/L KHCO3 | H-cell | -0.65 | 95.2 | >15 | 8 | [ | |||||||||
NiIMP/NC923 | 0.1 mol/L KHCO3 | H-cell | -0.6 | 82 | — | — | [ | |||||||||
NiNOMC | 0.1 mol/L KHCO3 | H-cell | -0.9 | 93.3 | 31.55 mA cm-2 @-1.30 V | 10 | [ | |||||||||
SE-Ni SAs@PNC | 0.5 mol/L KHCO3 | H-cell | -1 | 88 | 18.3 | 60 | [ | |||||||||
Ni-N-C | 0.5 mol/L KHCO3 | H-cell | -0.77 | 92 | ∼7.5 | 12 | [ | |||||||||
Ni-N | 0.1 mol/L KHCO3 | H-cell | -0.6 | 82 | — | 5 | [ | |||||||||
SA-Ni/N-CS | 0.5 mol/L KHCO3 | H-cell | -0.8 | 95.1 | — | 24 | [ | |||||||||
Ni-N-C | 0.1 mol/L KHCO3 | H-cell | -0.8 | 94 | 4.6 mA cm-2 @-0.9 V | — | [ | |||||||||
Ni-SAC | 0.5 mol/L KHCO3 | H-cell | -0.9 | 95 | — | 30 | [ | |||||||||
NiNPIC | 0.5 mol/L KHCO3 | H-cell | -0.54 | 95.1 | 10.2 | 24 | [ | |||||||||
Ni/NC | 0.1 mol/L KHCO3 | H-cell | -0.69 | 92.3 | 4 mA cm-2 @-0.8 V | 9 | [ | |||||||||
NiNG-S | 0.5 mol/L KHCO3 | H-cell | -0.8 | 97 | 40.3 mA cm-2 @-0.9 V | 2000 s | [ | |||||||||
SA-NiNG-NV | 0.5 mol/L KHCO3 | H-cell | -0.8 | 96 | 32.5 mA cm-2 @-1 V | 20 | [ | |||||||||
NiPS3 | 0.5 mol/L KHCO3 | H-cell | -0.8 | 95 | 7.8 | 16 | [ | |||||||||
Ni-N-C Fe-N-C | 0.5 mol/L KHCO3 0.5 mol/L KHCO3 | H-cell H-cell | ∼-0.6 V -0.4, -0.5 | > 95 > 90 | 11 10 mA cm-2 @-0.7 V | — — | [186] [ | |||||||||
Materials | Electrolyte | Cell | E/V vs. RHE | FE/% | j/(mA cm-2) | Stability/h | Ref. | |||||||||
Fe-N/CNT@GNR | 0.1 mol/L KHCO3 | H-cell | -0.65 | 96 | 22.6 | 5 | [ | |||||||||
Fe/ZIF-8 | 0.1 mol/L KHCO3 | H-cell | -0.73 | 85 | 3.7 | 2 | [ | |||||||||
Fe-SA/NCS-X | 0.5 mol/L KHCO3 | H-cell | -0.45 | 87 | 10.48 mA cm-2 @-0.89 V | 10 | [ | |||||||||
C-AFC©ZIF-8 | 0.1 mol/L KHCO3 | H-cell | -0.43 | 93 | 10 | — | [ | |||||||||
Fe-N-C | 0.1 mol/L NaHCO3 | H-cell | -0.6 | 91 | 7.5 | 6 | [ | |||||||||
FexN@Fe-N-C | 0.5 mol/L KHCO3 | H-cell | -0.53 | 95 | 4.71 | 24 | [ | |||||||||
Fe-N4-graphene | 0.1 mol/L KHCO3 | H-cell | -0.6 | ~80 | ~2.5 | 10 | [ | |||||||||
Fe-N-C | 0.1 mol/L KHCO3 | H-cell | -0.6 | 85 | 5 | — | [ | |||||||||
Fe-N-PC | 0.5 mol/L KHCO3 | H-cell | -0.49 | ∼90 | 11.44 | 24 | [ | |||||||||
Fe-CN | 0.1 mol/L KHCO3 | H-cell | -0.5 | 94 | — | 12 | [ | |||||||||
Fe-N5 | 0.1 mol/L KHCO3 | H-cell | -0.46 | 97 | — | 24 | [ | |||||||||
Fe-N-C | 0.5 mol/L KHCO3 | H-cell | -0.53 | 95 | 1.9 | — | [ | |||||||||
Fe-N-C | 0.1 mol/L Na2SO4 | H-cell | -0.6 | 90 | 2.5 | 6 | [ | |||||||||
Fe-N4/CF | 0.5 mol/L KHCO3 | H-cell | -0.5 | 94.9 | — | 60 | [ | |||||||||
Fe-N4-C | 0.1 mol/L KHCO3 | H-cell | -0.58 | 93 | 2.8 | 20 | [ | |||||||||
Fe-SA | 0.1 mol/L KHCO3 | H-cell | -0.58 | 90 | — | — | [ | |||||||||
Fe-N-C | 0.1 mol/L KHCO3 | H-cell | -1 V vs. NHE | 80 | — | — | [ | |||||||||
Fe-SAC/NPC | 0.5 mol/L KHCO3 | H-cell | overpotential 0.23 V | 97 | 5 | 24 | [ | |||||||||
Fe-CON400-400 | 0.1 mol/L NaHCO3 | H-cell | -0.58 to -0.87 | 100 | 10.23 mA cm-2 @-0.83 V | 12 h @-0.83 V | [ | |||||||||
H2-FeN4/C | 0.1 mol/L NaHCO3 | H-cell | -0.6 | 97 | — | 24 | [ | |||||||||
Co-N-C | 0.5 mol/L KHCO3 | H-cell | -1 | 80 | 72 | — | [ | |||||||||
Co-N2-C | 0.5 mol/L KHCO3 | H-cell | -0.52 | 94 | 18.1 | 60 | [ | |||||||||
Co-N2-carbon spheres | 0.2 mol/L KHCO3 | H-cell | -0.73, -0.79 | 99 | 6.2 | 10 | [ | |||||||||
Co@CoNC900 | 0.1 mol/L KHCO3 | H-cell | -0.6 | 58 | ~10 mA cm-2 @-0.8 V | 12 | [ | |||||||||
Cu-N2/GN | 0.1 mol/L KHCO3 | H-cell | -0.5 | 81 | 10 mA cm-2 @-0.75 V | 10 | [ | |||||||||
Cu-S1N3/Cux | 0.1 mol/L KHCO3 | H-cell | -0.65 | 100 | 3.3 | — | [ | |||||||||
Cu-APC | 0.2 mol/L NaHCO3 | H-cell | -0.78 | 92 | 18.74 mA cm-2 @-0.98 V | 3 | [ | |||||||||
Sn-NOC | 0.1 mol/L KHCO3 | H-cell | -0.7 | 94 | 13.9 | 8 | [ | |||||||||
Sn/N-C | 0.5 mol/L KHCO3 | H-cell | -0.6 | 91 | 1.75 | 24 | [ | |||||||||
Cu20Sn1 | Catholyte: 0.5 mol/L KHCO3 Anolyte: 1 mol/L KOH | H-cell | -1 | 95.3 | 12.5 | 10 | [ | |||||||||
ZnN4 | 0.5 mol/L KHCO3 | H-cell | -0.43 | 95 | 4.8 | 75 | [ | |||||||||
Bi SAs/NC | 0.1 mol/L NaHCO3 | H-cell | -0.5 | 97 | 3.9 | 4 | [ | |||||||||
Sb-NC | 0.1 mol/L NaHCO3 | H-cell | -0.9 | 82 | 2.4 | 24 | [ | |||||||||
Y1/NC | 0.5 mol/L KHCO3 | H-cell | -0.58 | 88.3 | 1.05 mA cm-2 @-0.78 V | 12 | [ | |||||||||
Sc1/NC | 0.5 mol/L KHCO3 | H-cell | -0.68 | 81.3 | 1.43 mA cm-2 @-0.78 V | 12 | [ | |||||||||
Ag2-G | 0.5 mol/L KHCO3 | H-cell | -0.7 | 93.4 | 11.87 | 36 | [ | |||||||||
Ag1-N3/PCNC | 0.1 mol/L KHCO3 | H-cell | -0.37 | 95 | 7.6 mA cm-2 @-0.55 V | 40 | [ | |||||||||
Ni-Zn-N6-C | 0.5 mol/L KHCO3 | H-cell | -0.8 | 99 | ≈20.23 mA cm-2 at -0.9 V | 28 | [ | |||||||||
Ni/Fe-N-C | 0.5 mol/L KHCO3 | H-cell | -0.7 | 98 | 9.5 | 30 | [ | |||||||||
(Cl,N)-Mn/G (Cl,N)-Mn/G (Cl,N)-Mn/G (Cl,N)-Mn/G (Cl,N)-Mn/G (Cl,N)-Mn/G | 0.5 mol/L KHCO3 0.5 mol/L KHCO3 0.5 mol/L KHCO3 0.5 mol/L KCl 0.5 mol/L Na2SO4 0.5 mol/L K2SO4 | H-cell H-cell H-cell H-cell H-cell H-cell | -0.6 -0.5 -0.7 -0.5 -0.6 -0.6 | 97 94 90 95 ~95 95 | 9.2 9.4 12.3 — — — | 12 12 12 12 12 12 | [ [ [ [ [ [ | |||||||||
Materials | Electrolyte | Cell | E/V vs. RHE | FE/% | j/(mA cm-2) | Stability/h | Ref. | |||||||||
Fe1-Ni1-N-C | 0.5 mol/L KHCO3 | H-cell | -0.5 | 96.2 | 2.4 | 10 | [ | |||||||||
A-Ni@CMK | 0.5 mol/L KHCO3 | H-cell | -0.7 | 95 | 51 mA cm-2 @-0.8 V | 10 | [ | |||||||||
NiSAs/FN-CNSs | 0.5 mol/L KHCO3 | H-cell | -0.8 | 99.8 | 36.1 mA cm-2 @-1.1 V | 50 | [ | |||||||||
Mg-C3N4 | 0.5 mol/L KHCO3 | H-cell | -1.178 | ≥90 | 32 | 4.2 | [ | |||||||||
ZrO2@Ni-NC | 0.5 mol/L KHCO3 1 mol/L KHCO3 | H-cell Flow cell | -0.3 -1.58 | 98.6 96.8 | 15.6 mA cm-2 @-1 V 200 | 12 h @-1 V 3 | [ | |||||||||
Ni-N-C | 1 mol/L KHCO3 | Flow-cell | -0.81 | ~85 | 200 | 10 | [ | |||||||||
A-Ni@CMK | 1 mol/L KOH | Flow cell | -0.5 | 100 | 366 mA cm-2 @-0.8 V | 5 | [ | |||||||||
Mg-C3N4 | 1 mol/L KOH | Flow cell | — | ≥90 | 300 | 4.2 | [ | |||||||||
Ni-N/C | 1 mol/L KOH | Flow cell | -0.9 | 89.3 | 447.6 mA cm-2 @-1 V vs. RHE | 6 h @-1 V vs. RHE | [ | |||||||||
CNNi-700 | 1 mol/L KOH | Flow cell | -0.93 | 97 | 223 | 120 | [ | |||||||||
CA/N-Ni aerogel | 1 mol/L KHCO3 | Flow cell | -0.8 | 98 | 273 | 12 | [ | |||||||||
Ni-N-C | 0.5 mol/L KHCO3 1 mol/L KOH 3 mol/L KI + 1 mol/L KOH | Flow cell Flow cell Flow cell | -0.93 -0.61 -0.51 | 97 93 98 | 152 67 206 | 17 h @-0.75 V 17 h @-0.75 V 17 h @-0.75 V | [ | |||||||||
Ni-N-Graphene shell | 0.5 mol/L KHCO3 | Flow cell | -0.76 | ~97 | ~60 | 20 | [ | |||||||||
H-CPs | 0.5 mol/L KHCO3 | Flow cell | -1.2 | 90.8 | 60.11 | 40 | [ | |||||||||
CoSA/HCNFs | 0.1 mol/L KHCO3 | Flow cell | -0.9 | 92 | 211 | 50 | [ | |||||||||
Fe3+-N-C | 0.5 mol/L KHCO3 | Flow cell | -0.45 | 90 | 94 | 12 | [ | |||||||||
Ni-N-C | 1 mol/L KHCO3 | Flow cell | -1 | ~90 | >200 | 20 h @700 mA/cm2 | [ | |||||||||
Ni-N4‒xCx active sites | 1 mol/L KOH | Flow cell | ~-0.25 | 99.4 | 300 | 6 h @100 mA/cm2 | [ | |||||||||
SA Ni-NC | 0.1 mol/L KOH + 0.5 mol/L K2(SO)4 | Flow cell | -1.15 | ~ 100 | 170 | — | [ | |||||||||
NiSAs/FN-CNSs | Catholyte: 2.0 mol/L KHCO3 Anolyte: 2.0 mol/L glycerol in 2.0 mol/L KOH | Flow cell | 2.2 | ~90 | 175 mA cm-2 @2.5 V | 400 | [ | |||||||||
NiSA/PCFM | 0.5 mol/L KHCO3 | Flow cell | -1.2 -1.1 | 83 88 | 336.5 308.4 | 120 h @-1 V | [ | |||||||||
Ni-SA-NCs | — | MEA | -2.9 3 | 99 | ~300 380 | 9 h @-2.6 V | [ | |||||||||
Ni-N-C | 0.5 mol/L KOH | MEA | 3 | >94 | 225 | — | [ | |||||||||
Ni-N/C | 0.1 mol/L KHCO3 | MEA | -3 | 100 | 299.1 | — | [ | |||||||||
Fe/Cu-N-C | 0.1 mol/L KHCO3 | Electrochemical hydrogen pump reactor | -0.8 | 99.2 | 12.91 | 60 | [ |
Materials | Electrolyte | Cell | E/V vs. RHE | Main product (FE/%) | j/(mA cm-2) | Stability/h | Ref. |
---|---|---|---|---|---|---|---|
Cu-N-C-900 | 0.1 mol/L KHCO3 | H-cell | -1.6 | CH4 [38.6] | 14.8 | 10 | [ |
PTF(Ni)/Cu | 0.5 mol/L KHCO3 + 0.1 mol/L KCl | H-cell | -1.1 | C2H4 [57.3] | 3.1 | 11 | [ |
20% Cu/CuSiO3 | 0.1 mol/L KHCO3 | H-cell | -1.1 | C2H4 [51.8] | 20.20 | 6 | [ |
CuSAs/TCNFs | 0.1 mol/L KHCO3 | H-cell | -0.9 | CH3OH [ | 93 | 50 | [ |
Cu-CeO2-4% | 0.1 mol/L KHCO3 | H-cell | -1.8 | CH4 [~58] | ~56 | 2.2 | [ |
Cu9Ag1NWs | 0.1 mol/L KHCO3 | H-cell | -1.17 | CH4 [ | — | — | [ |
Sn1/Vo-CuO-90 | [Bmim]BF4/H2O (molar ratio 1:3) | H-cell | -2.0 V vs. Ag/Ag+ | CH3OH [88.6] | 67 | 36 | [ |
In-N-C | 0.5 mol/L KHCO3 | H-cell | -0.65 | HCOOH [ | 8.87 | 60 | [ |
Sn-N-C | 0.25 mol/L KHCO3 | H-cell | -1.6 VSCE | HCOOH [74.3] | 11.7 | 200 | [ |
Sb-N4 | 0.5 mol/L KHCO3 | H-cell | -0.8 | HCOOH [ | — | 10 | [ |
Mo@NG | 4 mol% EmimBF4 + 96 mol% H2O | H-cell | -1.4 | HCOOH [~28] | 105 mA cm-2 @ -0.6 V | 8.3 | [ |
Pb1Cu | 0.5 mol/L KHCO3 | H-cell | -0.72 | HCOOH [95.7] | 6.4 | — | [ |
Cu-SA/NPC | 0.1 mol/L KHCO3 | H-cell | -0.36 | CH3COCH3 [36.7] | — | — | [ |
M-AuPd | 0.1 mol/L KHCO3 | two-component PEEK cell | -0.25 | HCOOH [ | 6.5 | 1 | [ |
Pb1Cu | 0.5 mol/L KHCO3 | Flow cell | -0.8 | HCOOH [ | 1200 mA cm-2 @-1.15 V | 20 h @ 500 mA cm-2 | [ |
Cu SAC | 1 mol/L KOH | Flow cell | -1.5 | CH4 [ | 340.2 | — | [ |
Cu-Al | 1 mol/L KOH | Flow cell | — | C2H4 [ | 480 | — | [ |
Ag0.14/Cu0.86 | 1 mol/L KOH | Flow cell | -0.67 | C2H5OH [ | 103.5 | 2 | [ |
Cu-N-C | 0.1 mol/L CsHCO3 | Flow cell | -1.2 | C2H5OH [ | 16.2 | — | [ |
Cu/p-Al2O3 | 1 mol/L KOH | Flow cell | -1.2 | CH4 [ | 153 | — | [ |
Cu-N-5%-400 | 1 mol/L KOH | Flow cell | -0.9 | CH4 [ | 100 mA cm-2 @-1 V | 3 | [ |
Pb1Cu | solid electrolyte | MEA | -3.86 | HCOOH [~94] | 375 | 180 h @-3.45 V | [ |
Table 3 Summary of the performances of metal SACs for CO2RR toward other products.
Materials | Electrolyte | Cell | E/V vs. RHE | Main product (FE/%) | j/(mA cm-2) | Stability/h | Ref. |
---|---|---|---|---|---|---|---|
Cu-N-C-900 | 0.1 mol/L KHCO3 | H-cell | -1.6 | CH4 [38.6] | 14.8 | 10 | [ |
PTF(Ni)/Cu | 0.5 mol/L KHCO3 + 0.1 mol/L KCl | H-cell | -1.1 | C2H4 [57.3] | 3.1 | 11 | [ |
20% Cu/CuSiO3 | 0.1 mol/L KHCO3 | H-cell | -1.1 | C2H4 [51.8] | 20.20 | 6 | [ |
CuSAs/TCNFs | 0.1 mol/L KHCO3 | H-cell | -0.9 | CH3OH [ | 93 | 50 | [ |
Cu-CeO2-4% | 0.1 mol/L KHCO3 | H-cell | -1.8 | CH4 [~58] | ~56 | 2.2 | [ |
Cu9Ag1NWs | 0.1 mol/L KHCO3 | H-cell | -1.17 | CH4 [ | — | — | [ |
Sn1/Vo-CuO-90 | [Bmim]BF4/H2O (molar ratio 1:3) | H-cell | -2.0 V vs. Ag/Ag+ | CH3OH [88.6] | 67 | 36 | [ |
In-N-C | 0.5 mol/L KHCO3 | H-cell | -0.65 | HCOOH [ | 8.87 | 60 | [ |
Sn-N-C | 0.25 mol/L KHCO3 | H-cell | -1.6 VSCE | HCOOH [74.3] | 11.7 | 200 | [ |
Sb-N4 | 0.5 mol/L KHCO3 | H-cell | -0.8 | HCOOH [ | — | 10 | [ |
Mo@NG | 4 mol% EmimBF4 + 96 mol% H2O | H-cell | -1.4 | HCOOH [~28] | 105 mA cm-2 @ -0.6 V | 8.3 | [ |
Pb1Cu | 0.5 mol/L KHCO3 | H-cell | -0.72 | HCOOH [95.7] | 6.4 | — | [ |
Cu-SA/NPC | 0.1 mol/L KHCO3 | H-cell | -0.36 | CH3COCH3 [36.7] | — | — | [ |
M-AuPd | 0.1 mol/L KHCO3 | two-component PEEK cell | -0.25 | HCOOH [ | 6.5 | 1 | [ |
Pb1Cu | 0.5 mol/L KHCO3 | Flow cell | -0.8 | HCOOH [ | 1200 mA cm-2 @-1.15 V | 20 h @ 500 mA cm-2 | [ |
Cu SAC | 1 mol/L KOH | Flow cell | -1.5 | CH4 [ | 340.2 | — | [ |
Cu-Al | 1 mol/L KOH | Flow cell | — | C2H4 [ | 480 | — | [ |
Ag0.14/Cu0.86 | 1 mol/L KOH | Flow cell | -0.67 | C2H5OH [ | 103.5 | 2 | [ |
Cu-N-C | 0.1 mol/L CsHCO3 | Flow cell | -1.2 | C2H5OH [ | 16.2 | — | [ |
Cu/p-Al2O3 | 1 mol/L KOH | Flow cell | -1.2 | CH4 [ | 153 | — | [ |
Cu-N-5%-400 | 1 mol/L KOH | Flow cell | -0.9 | CH4 [ | 100 mA cm-2 @-1 V | 3 | [ |
Pb1Cu | solid electrolyte | MEA | -3.86 | HCOOH [~94] | 375 | 180 h @-3.45 V | [ |
Fig. 7. Electrochemical performances of M-N-C SACs for CO2RR. (a) FEs of CO at different applied potentials on SE-Ni SAs@PNC, Ni NPs@NC, NC, Ni NPs@C, and Ni SAs@NC electrocatalysts. (b) TOFs, partial CO current density plots (green represents the results for the Ni SAs@NC catalyst, a black arrow points to a representation of this catalyst). (a,b) Reprinted from Ref. [94] with permission. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Faradaic efficiency of the H-M-G catalyst. Reprinted from Ref. [73] with permission. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) CO partial current density versus different potentials applied. Reprinted from Ref. [84] with permission. Copyright 2017, Elsevier. H2/CO ratio with applied potential (e) and FECO (f) for Co@CoNC-800, Co@CoNC-900, and Co@CoNC-1000 in CO2-saturated 0.1 mol/L KHCO3. Reprinted from Ref. [148] with permission. Copyright 2020, American Chemical Society. (g) Faradaic efficiencies of all products at CuSAs/TCNFs. Reprinted from Ref. [110] with permission. Copyright 2019, American Chemical Society. (h) Partial current densities of CO on the catalysts under different potentials. Reprinted from Ref. [92] with permission. Copyright 2020, Elsevier. (i) Electrochemical stability test measured at -0.6 V vs. RHE for Pd/C (black) and Pd-NC (green). Reprinted from Ref. [91] with permission. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 8. Electrochemical performances of noble metal SACs for CO2RR. (a) CO FEs and current densities at different potentials for Cu97Sn3. Reprinted from Ref. [219] with permission. Copyright 2021, Springer Nature. (b) Mass activities of Pd/C, M-Pd, and M-AuPd(20) at -0.25 V vs. RHE for 1 h. Reprinted from Ref. [214] with permission. Copyright 2021, American Chemical Society. FE (c) and stability test (d) of 20% Cu/CuSiO3. (e) Optimized model representing Cu0-Cu+ sites and inset shows Bader charge for Cu0-Cu+ sites. (c-e) Reprinted from Ref. [209] with permission. Copyright 2021, John Wiley and Sons. (f) Faradaic efficiencies (bars, left y-axis) and deep reduction products current density (jdrp, red curves, right y-axis) of Cu-CeO2-4% at different overpotentials. The deep reduction products were the first five products in the legends at the bottom, marked with a red line. (g) Left y-axis: stability of FECH4 (blue squares) and FEH2 (black squares). Right y-axis: total current density (jtotal) of Cu-CeO2-4% at -1.8 V (red curves, right y-axis). (f,g) Reprinted from with Ref. [39] permission. Copyright 2018, American Chemical Society. (h) The FECO at different applied potentials with 6 h electrolysis. (i) Tafel plots for CO production. (h,i) Reprinted from Ref. [102] with permission. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Materials | Electrolyte | E/V vs. RHE | Main product [FE/%] | j/mA cm-2 | Stability/h | Ref. |
---|---|---|---|---|---|---|
Al2(OH)2TCPP-Co | 0.5 mol/L KHCO3 | -0.7 | CO [ | 1 | 7 | [ |
COF-367-Co | 0.5 mol/L KHCO3 | -0.67 | CO [ | 1.8 | 24 | [ |
TAPP(Co)-B18C6-COF | 0.5 mol/L KHCO3 | -0.7 | CO [93.3] | 9.45 mA cm-2 @-1 V | 30 | [ |
Cu-MOF (HKUST1) | 1 mol/L KOH | -1.07 | C2H4 [ | 262 | — | [ |
Cu-Tph-COF-Dct | 1 mol/L KOH | -0.9 | CH4 [~80] | 220 | 5 | [ |
[Cu4ZnCl4(btdd)3] | 0.5 mol/L NaHCO3 | -1.2 -1.3 | CH4 [92] CH4 [ | 9.8 18.3 | — | [ |
ZIF-8SO4 | 0.5 mol/L NaCl | -1.8 V vs. SCE | CO [65.5] | — | 4 | [ |
CoPc | 0.1 mol/L NaHCO3 | -0.73 | CO [ | — | 6 | [ |
HKUST-1 | 0.5 mol/L KHCO3 | -1.16 | CH4 [ | 4.4 | — | [ |
Cu-Pc | -1.06 | CH4 [ | 13 | |||
[Cu(cylam)]Cl2 | -1.26 | CH4 [ | 2.8 | |||
Por Zn (ZnTMsP) | 0.1 mol/L TBAP6/DMF/H2O | -1.7 V vs. SHE | CO [ | 2.1 | 4 | [ |
Mn(bipyridyl)(CO)3Br carbonyl | 0.1 mol/L CH3CN + TBAP | -1.7 | CO [ | 0.06 | 22 | [ |
Mn(bpy)(CO)3Br | 0.2 mol/L Bu4NBF4/MeCN + 2 mol/L Et3N + 2 mol/L iPrOH 0.2 mol/L Bu4NBF4/MeCN + 2 mol/L Et2NH + 2 mol/L iPrOH | -1.96 V vs. Fc+/Fc | HCOOH [71 ± 5] CO [50 ± 0.3] | — — | — — | [ |
[Fe4N(CO)12]- | KHCO3/HCO3- | -1.2 V vs. SCE | HCOOH [ | 4 | 24 | [ |
PCN-222(Fe)/C | 0.5 mol/L KHCO3 | -0.6 | CO [ | 1.15 | 10 | [ |
Fe_MOF-525 | 1 mol/L TBAP6/CH3CN | -1.3 V vs. NHE | CO [ | 2.3 | 4 | [ |
FeTDHPP | DMF + 2 mol/L H2O | -1.16 V vs. NHE | CO [ | 0.31 | 4 | [ |
CATpyr-CNT | 0.5 mol/L NaHCO3 | -1.03 V vs. NHE | CO [ | ~0.6 | 3 | [ |
Fe-TPP-CNT | 0.5 mol/L KHCO3 | -1.35 V vs. SCE | CO [ | 0.9 | 4 | [ |
Co-TPP-CNT | CO [ | 3.2 | ||||
CoTPP | 0.5 mol/L NaHCO3 | -0.6 | CO [ | — | — | [ |
CoTPP-cov | 0.5 mol/L KHCO3 | -1.05 V vs. NHE | CO [ | 4.7 | 24 h @-1.1 V | [ |
CoFPC (perfluorinated cobalt phthalocyanine) | 0.5 mol/L NaHCO3 | -0.8 | CO [ | ~4.2 | 12 | [ |
Co-Pc-CN/CNT (3%) | 0.1 mol/L KHCO3 | -0.63 | CO [ | 15 | — | [ |
Co-Pc/CNT (2.5%) | CO [ | 10 | 10 | |||
CoPPcCNT | 0.5 mol/L NaHCO3 | -0.61 | CO [ | 20 | 24 | [ |
CoPP@CNT | 0.5 mol/L NaHCO3 | -0.49 | CO [98.3] | 25.1 | 12 h @-0.6 V | [ |
CoPc + CoPc-A | 0.1 mol/L KHCO3 | -0.79 | CO [91.5] | 197 A mg-1 @-0.89 V | 30 | [ |
CoPc | 0.1 mol/L NaHCO3 | -0.73 | CO [ | — | 6 | [ |
Co(L4-) | 1.5 mol/L TFE | -2.75 V vs. Fc/Fc+ | CO [99.7] | — | — | [ |
Co(PDI-PyCH3+I-) | acetonitrile with 11 mol/L water | -1.95 V vs. Fc+/0 | CO [>95] | — | — | [ |
Cu3(HITP)2 | 0.1 mol/L KHCO3 1 mol/L KOH | -1.37 -0.85 | C2H4 [70] C2H4 [ | 37.4 mA cm-2 @-1.67 V 305 mA cm-2 @-0.93 V | 10 10 | [ |
Por Cu | 0.5 mol/L NaHCO3 | -0.676 | CO [ | — | — | [285] |
-0.976 | CH4 [ | 13.2 | ||||
-0.976 | C2H4 [ | 8.4 | ||||
Crystalline CuPc | catholyte 0.5 mol/L KCl anolyte 3.0 mol/L KHCO3 | -1.40 V vs. SHE | C2H4 [ | 2.8 | 3 | [ |
RuPc/NPC | 0.5 mol/L KHCO3 | -1.07 V vs. NHE | C2H5OH [27.5] | — | 3 | [ |
[Re(NH2-bpy)] | ACN/TBAPF6 | -2.2 V vs. Fc+/Fc | CO [92 ± 6] | 15 mA cm-2 @-2.5 V vs. Fc+/Fc | — | [ |
Re-SURMOF | 0.1 mol/L TBAH acetonitrile solution + 5% trifluoroethanol | -1.6 V vs. NHE | CO [93 ± 5] | > 2 | 2 | [ |
Mn(bipyridine)-pyrene | 0.5 mol/L KHCO3 | -1.1 V vs. SHE | CO [34 ± 4] | 1.5 | — | [ |
AgDAT/C | 1 mol/L KOH | -1.5 V vs. Ag/AgCl | CO [>90] | 95 mA cm-2 | — | [ |
Table 4 Summary of the performances of molecular catalysts for CO2RR.
Materials | Electrolyte | E/V vs. RHE | Main product [FE/%] | j/mA cm-2 | Stability/h | Ref. |
---|---|---|---|---|---|---|
Al2(OH)2TCPP-Co | 0.5 mol/L KHCO3 | -0.7 | CO [ | 1 | 7 | [ |
COF-367-Co | 0.5 mol/L KHCO3 | -0.67 | CO [ | 1.8 | 24 | [ |
TAPP(Co)-B18C6-COF | 0.5 mol/L KHCO3 | -0.7 | CO [93.3] | 9.45 mA cm-2 @-1 V | 30 | [ |
Cu-MOF (HKUST1) | 1 mol/L KOH | -1.07 | C2H4 [ | 262 | — | [ |
Cu-Tph-COF-Dct | 1 mol/L KOH | -0.9 | CH4 [~80] | 220 | 5 | [ |
[Cu4ZnCl4(btdd)3] | 0.5 mol/L NaHCO3 | -1.2 -1.3 | CH4 [92] CH4 [ | 9.8 18.3 | — | [ |
ZIF-8SO4 | 0.5 mol/L NaCl | -1.8 V vs. SCE | CO [65.5] | — | 4 | [ |
CoPc | 0.1 mol/L NaHCO3 | -0.73 | CO [ | — | 6 | [ |
HKUST-1 | 0.5 mol/L KHCO3 | -1.16 | CH4 [ | 4.4 | — | [ |
Cu-Pc | -1.06 | CH4 [ | 13 | |||
[Cu(cylam)]Cl2 | -1.26 | CH4 [ | 2.8 | |||
Por Zn (ZnTMsP) | 0.1 mol/L TBAP6/DMF/H2O | -1.7 V vs. SHE | CO [ | 2.1 | 4 | [ |
Mn(bipyridyl)(CO)3Br carbonyl | 0.1 mol/L CH3CN + TBAP | -1.7 | CO [ | 0.06 | 22 | [ |
Mn(bpy)(CO)3Br | 0.2 mol/L Bu4NBF4/MeCN + 2 mol/L Et3N + 2 mol/L iPrOH 0.2 mol/L Bu4NBF4/MeCN + 2 mol/L Et2NH + 2 mol/L iPrOH | -1.96 V vs. Fc+/Fc | HCOOH [71 ± 5] CO [50 ± 0.3] | — — | — — | [ |
[Fe4N(CO)12]- | KHCO3/HCO3- | -1.2 V vs. SCE | HCOOH [ | 4 | 24 | [ |
PCN-222(Fe)/C | 0.5 mol/L KHCO3 | -0.6 | CO [ | 1.15 | 10 | [ |
Fe_MOF-525 | 1 mol/L TBAP6/CH3CN | -1.3 V vs. NHE | CO [ | 2.3 | 4 | [ |
FeTDHPP | DMF + 2 mol/L H2O | -1.16 V vs. NHE | CO [ | 0.31 | 4 | [ |
CATpyr-CNT | 0.5 mol/L NaHCO3 | -1.03 V vs. NHE | CO [ | ~0.6 | 3 | [ |
Fe-TPP-CNT | 0.5 mol/L KHCO3 | -1.35 V vs. SCE | CO [ | 0.9 | 4 | [ |
Co-TPP-CNT | CO [ | 3.2 | ||||
CoTPP | 0.5 mol/L NaHCO3 | -0.6 | CO [ | — | — | [ |
CoTPP-cov | 0.5 mol/L KHCO3 | -1.05 V vs. NHE | CO [ | 4.7 | 24 h @-1.1 V | [ |
CoFPC (perfluorinated cobalt phthalocyanine) | 0.5 mol/L NaHCO3 | -0.8 | CO [ | ~4.2 | 12 | [ |
Co-Pc-CN/CNT (3%) | 0.1 mol/L KHCO3 | -0.63 | CO [ | 15 | — | [ |
Co-Pc/CNT (2.5%) | CO [ | 10 | 10 | |||
CoPPcCNT | 0.5 mol/L NaHCO3 | -0.61 | CO [ | 20 | 24 | [ |
CoPP@CNT | 0.5 mol/L NaHCO3 | -0.49 | CO [98.3] | 25.1 | 12 h @-0.6 V | [ |
CoPc + CoPc-A | 0.1 mol/L KHCO3 | -0.79 | CO [91.5] | 197 A mg-1 @-0.89 V | 30 | [ |
CoPc | 0.1 mol/L NaHCO3 | -0.73 | CO [ | — | 6 | [ |
Co(L4-) | 1.5 mol/L TFE | -2.75 V vs. Fc/Fc+ | CO [99.7] | — | — | [ |
Co(PDI-PyCH3+I-) | acetonitrile with 11 mol/L water | -1.95 V vs. Fc+/0 | CO [>95] | — | — | [ |
Cu3(HITP)2 | 0.1 mol/L KHCO3 1 mol/L KOH | -1.37 -0.85 | C2H4 [70] C2H4 [ | 37.4 mA cm-2 @-1.67 V 305 mA cm-2 @-0.93 V | 10 10 | [ |
Por Cu | 0.5 mol/L NaHCO3 | -0.676 | CO [ | — | — | [285] |
-0.976 | CH4 [ | 13.2 | ||||
-0.976 | C2H4 [ | 8.4 | ||||
Crystalline CuPc | catholyte 0.5 mol/L KCl anolyte 3.0 mol/L KHCO3 | -1.40 V vs. SHE | C2H4 [ | 2.8 | 3 | [ |
RuPc/NPC | 0.5 mol/L KHCO3 | -1.07 V vs. NHE | C2H5OH [27.5] | — | 3 | [ |
[Re(NH2-bpy)] | ACN/TBAPF6 | -2.2 V vs. Fc+/Fc | CO [92 ± 6] | 15 mA cm-2 @-2.5 V vs. Fc+/Fc | — | [ |
Re-SURMOF | 0.1 mol/L TBAH acetonitrile solution + 5% trifluoroethanol | -1.6 V vs. NHE | CO [93 ± 5] | > 2 | 2 | [ |
Mn(bipyridine)-pyrene | 0.5 mol/L KHCO3 | -1.1 V vs. SHE | CO [34 ± 4] | 1.5 | — | [ |
AgDAT/C | 1 mol/L KOH | -1.5 V vs. Ag/AgCl | CO [>90] | 95 mA cm-2 | — | [ |
Fig. 9. Electrochemical performance of molecular catalysts for CO2RR. (a) Faradaic efficiencies for ZIF-8SO4. (b) Total current density and Faradic efficiency of CO in CPE at @1.8 V for ZIF-8SO4 in CO2-saturated NaCl (0.5 mol/L). (a,b) Reprinted from Ref. [220] with permission. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Current densities per milligram of cobalt in the different COF catalysts under an applied potential of -0.67 V vs. RHE in 0.5 mol/L aqueous potassium bicarbonate buffer. Reprinted from Ref. [228] with permission. Copyright 2017, American Chemical Society. (d) TOFCO at -0.73 V vs. RHE. (e) Faradaic efficiency for CO and H2 production at -0.73 V vs. RHE. Electroreduction experiments were performed in 0.1 mol/L NaHCO3 for 1 h and repeated at least 3 times for each loading. (d,e) Reprinted from Ref. [241] with permission. Copyright 2018, American chemical society. (f) Putative interfacial free energy diagrams for electrodes modified with conjugated RuII surface sites. The diagram denotes the Fermi level of the electrode, EF, and the redox potential of the molecule, E(RuIII/II), upon varying the applied potential. The electrostatic potential across the electrochemical double layer is indicated by the red dotted line. Reprinted from Ref. [251] with permission. Copyright 2017, American Chemical Society. (g) Faradaic efficiencies of CO2 reduction products in the gas phase for CoPc/CNT(2.5%) (red) and CoPc (blue) at various potentials. Reprinted from Ref. [46] with permission. Copyright 2017, Springer Nature. (h) Current density and FE measurements over 10 h of FePGF/CFP (neutral pH) at -0.54 V vs. RHE. Reprinted from Ref. [269] with permission. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (i) Summarized double-layer capacitance of CoIIPc, CoIIPc-tsGQ, CoIIPc-GQTG, CoIIPc-dp(AT), CoIIPc-polyA, and CoIIPc-polyT at -2.1 V vs. RHE. (h,i) Reprinted from Ref. [261] with permission. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 10. (a) Characterizations without in situ/operando. Aberration-corrected HAADF-STEM observation for Fe1-Ni1-N-C (inset: 3D atom-overlapping Gaussian-function fitting map of region 6 in panel. Reprinted from Ref. [197] with permission. Copyright 2021, American Chemical Society. XPS spectra of N 1s (b) and Sn 3d (c) of Sn-NOC. (b,c) Reprinted from Ref. [193] with permission. Copyright 2021, Wiley-VCH GmbH. (d) The 57Fe Mössbauer transmission spectra measured at 50 K for FeSAs/CNF-900. Reprinted from Ref. [327] with permission. Copyright 2020, Elsevier B.V. (e) XANES spectra at the Co K-edge (inset is the magnified image) of Co foil, Co3O4 and CoSA/HCNFs. (f) Fitting for EXAFS data of CoSA/HCNFs, inset is the Co-N4 structure. (e,f) Reprinted from Ref. [96] with permission. Copyright 2020, Elsevier Ltd. (g) WT-EXAFS spectra of Fe(Cp)2, FePc, N2-FeN4/C, and H2-FeN4/C. Reprinted from Ref. [190] with permission. Copyright 2021, Elsevier Inc.
Fig. 11. In situ Raman characterizations for catalysts. Raman spectra of Ni-TAPc collected on an Au electrode at various potentials (vs. RHE) in 0.5 mol/L KHCO3 aqueous solution at room temperature under an atmosphere of Ar (1 atm) (a) and CO2 (1 atm) (b). (a,b) Reprinted from Ref. [335] with permission. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Raman spectra from 400 to 2200 cm-1 for Ag/Zr-fcu-MOF-BDC (c) and Ag/Zr-fcu-MOF-NH2BDC (d). Magnified Raman spectra from 1800 to 2200 cm-1 for Ag/Zr-fcu-MOF-BDC (e) and Ag/Zr-fcu-MOF-NH2BDC (f). (c-f) Reprinted from Ref. [336] with permission. Copyright 2020, American Chemical Society.
Fig. 12. In situ ATR-IR characterizations for catalysts. (a) In situ ATR-IR of PyNiPc/CNT at -0.78 V vs. RHE in gradually CO2-saturated 0.5 mol/L KHCO3 using Ar-saturated 0.5 mol/L KHCO3 as background. (b) The proposed reaction pathways of ECR over PyNiPc/CNT. (a,b) Reprinted from Ref. [256] with permission. Copyright 2019, Elsevier B.V. (c,d) In situ ATR-FTIR spectra of Cu4II-MFU-4l collected at -1.2 V vs. RHE in CO2-saturated 0.5 mol/L NaHCO3 electrolyte. (c,d) Reprinted from Ref. [276] with permission. Copyright 2021, American Chemical Society. (e) Potential dependent (vs. SHE) difference spectra of Mnpyr in aqueous KHCO3 (0.5 mol/L) under argon and at room temperature with the reference spectrum recorded at 0 V (fully oxidized conditions) prior to each measurement. (f) ATR IR difference spectra of the reoxidation of Mnpyr at different potentials (vs. SHE, reference spectrum recorded at Eappl = -1.0 V). (e,f) Reprinted from Ref. [288] with permission. Copyright 2017, American Chemical Society.
Fig. 14. Operando 57Fe Mössbauer characterization. (a) Operando 57Fe Mössbauer spectra of 57Fe-enriched Fe-NC-S recorded at OCV, -0.3, -0.6, -0.9 V (vs., RHE), and after CO2RR (AFT) in CO2-saturated 0.5 mol/L KHCO3 solution. (b) Current-time response of 57Fe enriched Fe-NC-S for CO2RR (the electrolyte of CO2-saturated 0.5 mol/L KHCO3 was exchanged at every certain time interval to maintain the pH of the solution). (c) Content of different Fe moieties and reactive intermediates obtained from operando 57Fe Mössbauer measurements in CO2-saturated 0.5 mol/L KHCO3 solution. Reprinted from Ref. [339] with permission. Copyright 2021, American Chemical Society.
Fig. 15. Operando XAS characterizations for catalysts. (a) Normalized Fe K-edge XANES spectra of Fe-NC-S recorded under different Ar- and CO2-saturated conditions. (b) Normalized operando Fe K-edge XANES spectra. (c) FT magnitudes of EXAFS spectra of Fe-NC-S at various biases (vs. RHE) in CO2-saturated 0.5 mol/L KHCO3 solution. (d) Coordination numbers of Fe-N and Fe-C in Fe-NC-S obtained from the fitting results of the operando EXAFS spectra. The insets of (a-c) show the enlarged spectra. Reprinted from Ref. [339] with permission. Copyright 2021, American Chemical Society.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[3] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[4] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[5] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[6] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[7] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[8] | 黄正清, 贺姝玥, 班涛, 高新, 许云华, 常春然. Pt-Cu合金催化剂上甲烷无氧偶联的机理与微观动力学研究: 从单原子位点到单团簇位点[J]. 催化学报, 2023, 48(5): 90-100. |
[9] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[10] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. 无碱CO2加氢高效制甲酸Pd/g-C3N4催化剂的单原子和纳米簇的协同作用[J]. 催化学报, 2023, 47(4): 214-221. |
[11] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[12] | 聂超, 龙向东, 刘琪, 王嘉, 展飞, 赵泽伦, 李炯, 席永杰, 李福伟. 原子分散Ru-P-Ru催化剂的制备及其在多类加氢中的高效应用[J]. 催化学报, 2023, 45(2): 107-119. |
[13] | 白雪, 韩璟怡, 陈思雨, 牛效迪, 管景奇. 双杂原子配位提高单原子锰位点的析氧活性[J]. 催化学报, 2023, 54(11): 212-219. |
[14] | 黎晓阳, 曹宇飞, 熊佳容, 李隽, 肖海, 李昕阳, 苟清强, 戈钧. 酶-金属单原子复合催化剂在一锅法生物-化学反应的应用[J]. 催化学报, 2023, 44(1): 139-145. |
[15] | 韩璟怡, 管景奇. 单原子催化剂大数据库[J]. 催化学报, 2023, 44(1): 1-3. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||