催化学报 ›› 2024, Vol. 66: 257-267.DOI: 10.1016/S1872-2067(24)60120-8

• 论文 • 上一篇    下一篇

Ni掺杂超薄Bi4O5Br2调节偶极矩以增强内部电场促进光催化CO2转化

王小田, 胡波, 李源, 杨直雄, 张高科*()   

  1. 武汉理工大学矿物资源加工与环境湖北省重点实验室, 硅酸盐建筑材料国家重点实验室, 湖北武汉 430070
  • 收稿日期:2024-07-10 接受日期:2024-08-22 出版日期:2024-11-18 发布日期:2024-11-10
  • 通讯作者: *电子信箱: gkzhang@whut.edu.cn (张高科).
  • 基金资助:
    国家自然科学基金(92163125);中国国家自然科学基金与俄罗斯科学基金合作研究项目(22361132537)

Dipole moment regulation by Ni doping ultrathin Bi4O5Br2 for enhancing internal electric field toward efficient photocatalytic conversion of CO2 to CO

Xiaotian Wang, Bo Hu, Yuan Li, Zhixiong Yang, Gaoke Zhang*()   

  1. Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2024-07-10 Accepted:2024-08-22 Online:2024-11-18 Published:2024-11-10
  • Contact: *E-mail: gkzhang@whut.edu.cn (G. Zhang).
  • Supported by:
    National Natural Science Foundation of China(92163125);Cooperative Research project between the National Natural Science Foundation of China and the Russian Science Foundation(22361132537)

摘要:

传统化石燃料的过度使用使大气中CO2水平上升, 从而导致能源问题和温室效应. 通过光催化技术将CO2转化为可重复使用的化合物或可再生燃料被认为是解决能源问题和通过直接利用可持续太阳能实现碳中和的一种有前途的策略. 然而, 光生载流子分离效率低以及CO2在催化剂表面的吸附和活化能力差是制约光催化CO2转化效率的关键问题. 因此, 最大限度地促进光生载流子的分离和增加活性位点数量对于提高光催化CO2还原的整体性能至关重要. 在自发极化作用下, 通过在光催化剂表面引入掺杂原子可以调节材料偶极矩进而增强极化电场. 该方法不仅能提高电荷分离效率, 而且在增强半导体光催化剂对CO2的吸附和活化能力方面也有很大的潜力.

本文通过水热法和超声化学剥离法成功制备了Ni掺杂超薄Bi4O5Br2纳米片(UN Ni-BOB)光催化剂. 通过X射线粉末衍射和X射线光电子能谱证明了Ni2+离子成功掺杂. 采用扫描电镜、透射电镜和原子力显微镜对样品的形貌进行了表征, 结果表明UN Ni-BOB为超薄二维结构. 瞬态光电流和电阻抗测试分析结果表明, UN Ni-BOB材料具有更好的光生载流子分离效果和更高光电流响应能力, 从而实现了光催化活性的显著提高. 此外, CO2程序升温脱附测试结合理论计算结果表明, 在Bi4O5Br2晶格中引入Ni2+可以有效提高光催化剂对CO2的吸附和活化能力. 通过对Ni掺杂Bi4O5Br2前后内部偶极矩计算结果表明, Ni掺杂Bi4O5Br2在三个方向上的电偶极矩都有所增加, 并诱导电子发生自旋极化, 从而提高了材料中层间极化电场的强度, 使得光生载流子能够高效地分离和转移. 通过全光谱光照射下的水蒸气耦合光催化CO2还原实验, 研究了制备的光催化剂的光催化性能. 相较于Bi4O5Br2, 所合成的超薄Bi4O5Br2纳米片的光催化性能显著提升, 其中UN Ni1.0-BOB (Ni掺杂量为1.0%的样品UN Ni1.0-BOB)对CO2表现出最佳的催化还原性能, 其在全光谱照射3 h下, CO的产率为79.70 μmol g-1, 选择性为100%, 是Bi4O5Br2光催化性能的9.48倍. 最后, 通过原位红外测试对CO2在催化剂表面反应的中间产物进行检测, 提出了光催化还原CO2可能的反应路径.

综上所述, 本文利用Ni掺杂和构筑超薄结构协同的策略增加了Bi4O5Br2表面活性位点数量, 并促进了CO2分子的吸附和活化. 此外, 通过Ni掺杂调节偶极矩增强了Bi4O5Br2内部的极化电场强度, 进一步促进了光生载流子的分离和转移. 为设计高效的光催化CO2还原和高选择性产物的光催化剂提供参考.

关键词: Ni掺杂Bi4O5Br2, 超薄材料, 偶极矩, 极化电场, 光催化CO2还原

Abstract:

The low efficiency of photogenerated carrier separation, and the poor adsorption and activation ability of CO2 on the surface of photocatalyst were the key problems to limit the efficiency of photocatalytic CO2 reduction. Hence, maximally accelerating the immigration of photogenerated charges d increasing the number of active sites are critical points to boost the overall performance of photocatalytic CO2 reduction. However, it is still huge challenge. In this work, the Ni-doped ultrathin Bi4O5Br2 nanosheets, which was successfully prepared by hydrothermal and ultrasonic chemical stripping methods, exhibited efficient photocatalytic conversion of CO2 to CO. The results of experiments and theoretical calculations indicated that the doped Ni2+ significantly increased the crystal dipole moment of Bi4O5Br2 in y direction (from 0 to 0.096 eÅ), which enhanced the polarized electric field strength inside Bi4O5Br2, and further promoted the immigration of photogenerated carriers. Meanwhile, the ultrathin structure and doped Ni2+ synergistically increased the number of active sites, thereby promoting the adsorption and activation of CO2 molecules, as evidenced by experimental and theoretical results collectively. As result, The CO yield was as high as 26.57 μmol g-1 h-1 for the prepared Ni-doped ultrathin Bi4O5Br2 nanosheets under full spectrum light irradiation, which was 9.48 times that of Bi4O5Br2. Therefore, it is of great scientific significance in this study to explore strategies to promote the separation of photogenerated carriers and enhance the adsorption and activation ability of CO2 on the surface.

Key words: Ni-doped Bi4O5Br2, Ultra-thin nanomaterial, Dipole moment, Polarized electric field, Photocatalytic CO2 reduction