催化学报 ›› 2025, Vol. 68: 404-413.DOI: 10.1016/S1872-2067(24)60194-4

• 论文 • 上一篇    

Cu/Fe2O3异质界面协同级联催化硝酸盐高效电还原为氨

张翔, 李苇杭, 张进, 周豪慎, 钟苗*()   

  1. 南京大学现代工程与应用科学学院, 先进微结构协同创新中心, 固体微结构国家实验室, 地球关键材料循环前沿科学中心, 江苏南京 210023
  • 收稿日期:2024-09-14 接受日期:2024-11-04 出版日期:2025-01-18 发布日期:2025-01-02
  • 通讯作者: * 电子信箱: miaozhong@nju.edu.cn (钟苗).
  • 基金资助:
    国家自然科学基金(22272078);国家自然科学基金(22409087);催化基础国家重点实验室开放基金(2024SKL-A-016);江苏省“双创人才”计划

Efficient nitrate electroreduction to ammonia via synergistic cascade catalysis at Cu/Fe2O3 hetero-interfaces

Xiang Zhang, Weihang Li, Jin Zhang, Haoshen Zhou, Miao Zhong*()   

  1. Collaborative Innovation Centre of Advanced Microstructures, National Laboratory of Solid State Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
  • Received:2024-09-14 Accepted:2024-11-04 Online:2025-01-18 Published:2025-01-02
  • Contact: * E-mail: miaozhong@nju.edu.cn (M. Zhong).
  • Supported by:
    National Natural Science Foundation of China(22272078);National Natural Science Foundation of China(22409087);State Key Laboratory of Catalysis(2024SKL-A-016);“Innovation and Entrepreneurship of Talents plan” of Jiangsu Province

摘要:

氨(NH3)是一种重要的化学品, 广泛用于合成化肥、药品、纺织品和其他行业. 传统Haber-Bosch工艺用于NH3合成, 该工艺需高温高压条件. 另一方面, 工业废水中的过量硝酸盐(NO3)会导致水体污染. 通过电催化手段, 可以高效率、高选择性的将NO3还原为NH3, 不仅能够处理环境问题, 还提供了一种绿色可持续的NH3合成途径. 然而, NO3还原(NO3RR)过程复杂, 涉及8电子和9质子的转移, 并可能伴随强烈的析氢竞争反应(HER). 单一金属催化剂难以在低电位下同时具备对NO3和亚硝酸根(NO2)的高效吸附和还原能力.
针对该问题, 本文设计了Cu-Fe2O3异质结构催化剂, 利用其界面上的双位点有效分步催化实现NO3到NO2和NO2到NH3的电还原过程. 扫描电镜、透射电镜、X-射线衍射和X-射线光电子能谱等表征手段证实了Cu和Fe2O3在泡沫镍基底上的致密生长, 并确定了其价态和体相组成. 在0.1 mol L−1 KNO3和1 mol L−1 KOH的电解液中, Cu-Fe2O3在−0.27 VRHE下展示了接近100%的NH3法拉第效率, 并在−0.35 VRHE下实现了2.71 mmol h−1 cm−2的高NH3产率, 远超单独使用Cu或Fe2O3催化剂的性能. 同时, −0.27 VRHE下的半池能量效率超过35%, 且在宽NO3浓度范围内(0.05−1 mol L−1), NH3选择性均保持在90%以上. 通过15N同位素标记确定了氮源完全来自KNO3. 计时电流测试表明, 反应3 h后, NO3的去除率高达98%. 线性扫描伏安法测试(LSV)结果表明, Cu催化剂相较于Fe2O3具有更正的NO3还原到NO2起始电位(0.39 VRHE), 并在−0.2到−0.3 VRHE区间里出现NO2积累的电流平台. 由此可见, Cu对NO3的吸附和转化为NO2的能力相较于Fe2O3更为优异. 然而由于Cu对*N的吸附能力较弱, 导致NO2更容易脱附并在表面积累. 相比之下, Fe2O3在NO2溶液中的起始电位(>0.3 VRHE)远高于在NO3溶液中的起始电位(0.1 VRHE), 表明其具有较强的*N吸附能力, 能够更有效地将NO2进一步还原为NH3. 原位拉曼和原位红外光谱分析进一步证实了NO3RR过程中中间体的生成, Cu上的NO2出现电位(0.3 VRHE)明显早于Fe2O3 (0.1 VRHE). Fe2O3上NO2和NH3的起始电位相同(0.1 VRHE), 而Cu-Fe2O3上NO2和NH3的反应起始电位(0.4 VRHE)显著正于Cu和Fe2O3的反应起始电位, 这进一步证明了Cu将NO3还原为NO2, Fe2O3将NO2还原为NH3的级联催化, 与LSV结论一致.
本文为NO3电还原提供了一种催化剂设计的新思路, 通过Cu-Fe2O3异质结构实现了更低的反应开启电位(0.4 VRHE). 在低工作电位下(−0.27 VRHE)实现了423 mA cm−2的电流密度, 接近100%的NH3选择性和98%的NO3转化率, 展现了该级联催化剂在可持续NH3合成和废水处理中的潜力.

关键词: 电催化, 起始电位, 硝酸盐还原成氨, 级联催化, 异质界面

Abstract:

Electrochemical nitrate (NO3) reduction offers a promising route for ammonia (NH3) synthesis from industrial wastewater using renewable energy. However, achieving selective and active NO3 to NH3 conversion at low potentials remains challenging due to complex multi-electron transfer processes and competing reactions. Herein, we tackle this challenge by developing a cascade catalysis approach using synergistic active sites at Cu-Fe2O3 interfaces, significantly reducing the NO3 to NH3 at a low onset potential to about +0.4 VRHE. Specifically, Cu optimizes *NO3 adsorption, facilitating NO3 to nitrite (NO2) conversion, while adjacent Fe species in Fe2O3 promote the subsequent NO2 reduction to NH3 with favorable *NO2 adsorption. Electrochemical operating experiments, in situ Raman spectroscopy, and in situ infrared spectroscopy consolidate this improved onset potential and reduction kinetics via cascade catalysis. An NH3 partial current density of ~423 mA cm−2 and an NH3 Faradaic efficiency (FENH3) of 99.4% were achieved at −0.6 VRHE, with a maximum NH3 production rate of 2.71 mmol h−1 cm−2 at −0.8 VRHE. Remarkably, the half-cell energy efficiency exceeded 35% at −0.27 VRHE (80% iR corrected), maintaining an FENH3 above 90% across a wide range of NO3 concentrations (0.05−1 mol L−1). Using 15N isotopic tracing, we confirmed NO3 as the sole nitrogen source and attained a 98% NO3 removal efficiency. The catalyst exhibit stability over 106-h of continuous operation without noticeable degradation. This work highlights distinctive active sites in Cu-Fe2O3 for promoting the cascade NO3 to NO2 and NO2 to NH3 electrolysis at industrial relevant current densities.

Key words: Electrocatalysis, Reaction onset potential, Nitrate reduction to ammonia, Cascade catalysis, Heterogeneous interface