催化学报 ›› 2025, Vol. 71: 267-284.DOI: 10.1016/S1872-2067(24)60261-5

• 论文 • 上一篇    下一篇

用于生物质基香草醛水相高选择性加氢脱氧的氮掺杂中空碳球负载Pd催化剂的微环境设计和构筑

吴君a,*(), 刘立乾a, 严鑫悦a, 潘刚a, 白家豪a, 王成兵a, 李福伟b,*(), 李永a,*()   

  1. a陕西科技大学材料科学与工程学院, 无机材料绿色制备与功能化陕西省重点实验室, 陕西西安 710021
    b中国科学院大学化学工程学院, 北京 100049
  • 收稿日期:2024-12-03 接受日期:2025-02-08 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: wjhg168@163.com (吴君), fuweili@ucas.ac.cn (李福伟), yongli@sust.edu.cn (李永).
  • 基金资助:
    国家自然科学基金(21902094);国家自然科学基金(22472177);陕西省自然科学基金(2023-JC-QN-0103);中国博士后面上基金(2020M683405);陕西省教育厅科研计划项目(23JK0344)

Microenvironment engineering of nitrogen-doped hollow carbon spheres encapsulated with Pd catalysts for highly selective hydrodeoxygenation of biomass-derived vanillin in water

Jun Wua,*(), Liqian Liua, Xinyue Yana, Gang Pana, Jiahao Baia, Chengbing Wanga, Fuwei Lib,*(), Yong Lia,*()   

  1. aSchool of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
    bSchool of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-12-03 Accepted:2025-02-08 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail: wjhg168@163.com (J. Wu), fuweili@ucas.ac.cn (F. Li), yongli@sust.edu.cn (Y. Li).
  • Supported by:
    National Natural Science Foundation of China(21902094);National Natural Science Foundation of China(22472177);Natural Science Foundation of Shaanxi Province(2023-JC-QN-0103);China Postdoctoral Science Foundation(2020M683405);Scientific Research Program of Shaanxi Provincial Education Department(23JK0344)

摘要:

催化加氢脱氧(HDO)是实现生物质基含氧化合物增值催化转化的关键途径. 开发高效和高选择性的负载型金属催化剂对生物质基香草醛的水相HDO制备高附加值生物燃料至关重要. 负载型金属催化剂的表面微环境(活性金属中心的电子结构和载体的性质)决定了催化剂的加氢脱氧性能. 除活性金属中心的电子性质在调控催化HDO性能的主导作用外, 载体表面润湿性也会影响催化剂在香草醛水相HDO合成2-甲氧基-4-甲基苯酚(MMP)反应中的活性和选择性. 现已报道金属催化体系难以实现活性金属中心电子性质和载体表面润湿性的协同调控, 致使催化剂水相HDO性能还有很大提升空间. 此外, 高温高压苛刻的反应条件对金属催化剂的稳定性和产物选择性造成巨大挑战. 本文以氮掺杂中空碳球(NHCS)负载Pd纳米反应器作为香草醛HDO催化剂, 通过合理调控中空纳米反应器的组成和结构, 精确剪裁金属催化剂的表面微环境以提高其催化HDO性能.
本文制备的氮掺杂中空碳球载体的化学组成和多孔结构对金属催化剂表面微环境影响显著. NHCS中N原子的引入, 一方面能诱导产生电子金属-载体相互作用(EMSI), 调控活性金属的d带中心以提高催化HDO活性和选择性, 另一方面, 还能赋予催化剂表面良好的亲水性, 促进催化剂在水溶剂中均匀分散, 加快反应物对催化活性中心的接触. 本文采用二氧化硅硬模板导向的多巴胺和Pd前驱体的聚合和碳化过程, 研制出一系列氮掺杂中空碳球负载Pd催化剂(Pd@NHCS). 研究发现, 催化剂前驱体焙烧温度对Pd@NHCS的表面微环境包括活性Pd中心的电子性质和NHCS载体的润湿性和多孔结构影响显著. 该系列催化剂在香草醛水相HDO反应中表现出优异的催化性能. 其中, Pd@NHCS-600催化剂在120 °C, 0.1 MPa H2的水相温和反应条件下实现了香草醛向MMP的100%选择性转化. 催化本征动力学测试证明了Pd@NHCS-600的优异催化HDO活性, 其TOF值为337.77 h−1, 同时具有较低的表观活化能为18.63 kJ/mol. 详细的催化剂结构表征和动力学测试表明Pd@NHCS优异的催化HDO性能取决于独特的表面微环境. Pd@NHCS催化剂具有适宜的亲水性和丰富的孔道结构, 促进催化剂在水介质的均匀分散以及传质过程. 值得注意的是, 催化剂的焙烧温度直接影响NHCS表面N物种的种类和含量. X射线光电子能谱分析证明, NHCS表面吡啶氮物种与Pd活性金属中心的电子相互作用有助于形成富电子活性Pd中心. 结合紫外-可见光光谱和H2-程序升温脱附等测试, 证明了富电子的活性Pd中心可促进香草醛和H2的吸附和活化. 理论计算表明了吡啶氮N物种通过EMSI调控活性Pd的d带中心方面的优势, 显著提高反应物的表面吸附和活化. 根据构效关系分析和理论计算结果, 提出了Pd@NHCS催化香草醛HDO合成MMP的反应机理. 另外, Pd@NHCS催化剂在香草醛HDO反应中表现出良好的稳定性. 同时, Pd@NHCS催化剂具有广泛的底物适用性, 适宜于水相选择性催化多种生物质基羰基化合物的HDO转化制备高附加值化学品.
本文提出了一种简单可控的表面微环境调控策略, 成功构筑高效和稳定的氮掺杂中空碳球负载Pd催化剂, 实现了水相、常压温和反应条件下生物质基香草醛高选择性HDO合成MMP, 并阐明了催化体系构效关系和反应机理, 为负载型金属催化剂的设计制备和生物质的高值化利用提供了新思路.

关键词: 微环境调控, 氮掺杂中空碳球, Pd催化剂, 电子金属-载体相互作用, 加氢脱氧, 香草醛

Abstract:

Development of efficient and stable metal catalysts for the selective aqueous phase hydrodeoxygenation (HDO) of biomass-derived oxygenates to value-added biofuels is highly desired. An innovative surface microenvironment modulation strategy was used to construct the nitrogen-doped hollow carbon sphere encapsulated with Pd (Pd@NHCS-X, X: 600-800) nanoreactors for catalytic HDO of biomass-derived vanillin in water. The specific surface microenvironments of Pd@NHCS catalysts including the electronic property of active Pd centers and the surface wettability and porous structure of NHCS supports could be well-controlled by the calcination temperature of catalysts. Intrinsic kinetic evaluations demonstrated that the Pd@NHCS-600 catalyst presented a high turnover frequency of 337.77 h-1 and a low apparent activation energy of 18.63 kJ/mol. The excellent catalytic HDO performance was attributed to the unique surface microenvironment of Pd@NHCS catalyst based on structure-performance relationship analysis and DFT calculations. It revealed that pyridinic N species dominated the electronic property regulation of Pd sites through electronic metal-support interaction (EMSI) and produced numerous electron-rich active Pd centers, which not only intensified the dissociation and activation of H2 molecules, but also substantially improved the activation capability of vanillin via the enhanced adsorption of -C=O group. The fine hydrophilicity and abundant porous structure promoted the uniform dispersion of catalyst and ensured the effective access of reactants to catalytic active centers in water. Additionally, the Pd@NHCS-600 catalyst exhibited excellent catalytic stability and broad substrate applicability for the selective aqueous phase HDO of various biomass-derived carbonyl compounds. The proposed surface microenvironment modulation strategy will provide a new consideration for the rational design of high- performance nitrogen-doped carbon-supported metal catalysts for catalytic biomass transformation.

Key words: Microenvironment modulation, Nitrogen-doped hollow carbon sphere, Pd-based catalyst, Electronic metal-support interaction, Hydrodeoxygenation, Vanillin