催化学报 ›› 2025, Vol. 75: 105-114.DOI: 10.1016/S1872-2067(25)64750-4

• 论文 • 上一篇    下一篇

少层氧空位Bi2O2(OH)NO3用于水和空气双通道压电催化产H2O2

李原锐, 张晓磊, 李彤, 胡程, 陈芳, 蔡豪, 黄洪伟()   

  1. 中国地质大学(北京)材料科学与技术学院, 北京 100083
  • 收稿日期:2025-02-14 接受日期:2025-04-09 出版日期:2025-08-18 发布日期:2025-07-22
  • 通讯作者: *电子信箱: hhw@cugb.edu.cn (黄洪伟).
  • 基金资助:
    国家自然科学基金(52472258);国家自然科学基金(52272244);中央高校基础研究基金(2652022202)

Few-layer oxygen vacant Bi2O2(OH)NO3 for dual-channel piezocatalytic H2O2 production from H2O and air

Li Yuanrui, Zhang Xiaolei, Li Tong, Hu Cheng, Chen Fang, Cai Hao, Huang Hongwei()   

  1. Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2025-02-14 Accepted:2025-04-09 Online:2025-08-18 Published:2025-07-22
  • Contact: *E-mail: hhw@cugb.edu.cn (H. W. Huang).
  • Supported by:
    National Natural Science Foundation of China(52472258);National Natural Science Foundation of China(52272244);Fundamental Research Funds for the Central Universities(2652022202)

摘要:

H2O2作为一种重要的工业化学品, 广泛应用于化工、能源、环保和医疗等领域. 传统的蒽醌法存在能耗高、有机废料多、储存运输不稳定等问题. 压电催化技术因其环境友好的特性备受关注, 其中双电子氧还原(2e- ORR)和水氧化(2e- WOR)反应是实现H2O2生产的两条关键路径. 然而, 这两条路径都面临着4e-竞争反应的挑战. 近年来研究表明, 设计能同时促进2e- ORR和2e- WOR的双功能压电催化剂是提高H2O2产率的关键. Bi2O2(OH)NO3 (BON)因其特殊的非中心对称结构在压电催化领域展现出巨大潜力, 但其实际应用受限于压电极化弱和电荷转移慢等瓶颈问题. 通过缺陷工程调控氧空位(OVs)浓度可有效改善这些问题, 为开发高效压电催化剂提供了新思路.

本研究成功合成了具有氧空位浓度可调的少层BON压电催化剂, 并系统研究了其双通道压电催化性能. 通过调控乙二醇的使用量制备了不同OVs浓度的BON催化剂(记为BON-OVx, x代表具有不同氧空位浓度的BON-OV), 探讨了OVs浓度与压电催化性能之间的定量关系. 实验结果表明, 适量的OVs能够显著提升催化性能, 而过量的OVs则会导致电荷复合加剧, 从而抑制催化活性. 进一步利用X射线衍射、透射电镜和X射线光电子能谱等手段对最优样品的结构和化学组成进行了表征. 结果表明, OVs的引入显著优化了BON的电子结构和表面性质, 增强了其压电响应能力. 通过压电催化产H2O2实验评估了BON-OVx在纯水和空气中生产H2O2的性能. 结果表明, 最优样品BON-OV2催化剂在无需牺牲剂的条件下, 实现了1345.24 µmol·g-1的H2O2产率, 较原始BON提升了约5倍. 旋转圆盘电极测试结果验证了反应过程中的电子转移数接近理论电子数2, 这表明其对2e- ORR和2e- WOR过程有优异的选择性. 为进一步深入理解OVs浓度对压电催化性能的影响机制, 结合开尔文探针力显微镜(KPFM)、压电力显微镜(PFM)和密度泛函理论(DFT)计算等手段进行了系统分析. KPFM结果表明, BON-OV2显示出了更高的表面电势形成更强的压电场, 有利于催化过程中载流子的分离. PFM测试证实, OVs的引入增强了催化剂结构不对称性, 从而有效提升了体系的压电响应. DFT计算表明, OVs的引入显著增强了BON与O2分子的电荷相互作用和电子转移, 优化了d带中心和能带结构. 适当浓度的OV可以有效地促进O2活化为•O2-自由基, 并作为WOR和ORR的活性位点, 促进了载流子迁移和界面电荷转移, 从而协同提升了压电催化H2O2生成性能.

综上, 本文通过缺陷工程和微观结构调控, 成功开发了一种高效、绿色的双通道压电催化剂, 为H2O2的可持续生产提供了新思路, 推动了压电催化技术在H2O2生产领域的应用发展. 未来研究可进一步探索其他缺陷工程策略以及催化剂在实际工业应用中的性能优化, 为可持续化学工业的发展做出贡献.

关键词: Bi2O2(OH)NO3, 少层结构, 氧空位, 压电催化, 产H2O2

Abstract:

In comparison with traditional anthraquinone methods or electrocatalytic approaches, piezocatalysis for H2O2 generation has garnered extensive attention as an environmentally friendly strategy. It is highly anticipated to develop piezocatalysts with strong piezoresponse, high stress sensitivity and high catalytic activity. Here, we present few-layer Bi2O2(OH)NO3 (BON) nanosheets (~3-4 unit-cell layers) with oxygen vacancies, synthesized via a one-step method, as an efficient piezoelectric catalyst for dual-channel H2O2 production from H2O and air. The few-layer structure endows BON with exceptional mechanical energy harvesting capabilities, while the larger specific surface area facilitates amplifying the modification effects induced by oxygen vacancies. The introduced vacancies boost surface structure asymmetry, creating localized polarization fields and strengthening piezoelectric potential. Simultaneously, the intrinsic effect of oxygen vacancies efficiently facilitates the adsorption and activation of O2, H2O, and intermediates, thereby enhancing the piezoelectric catalytic activity. Thus, the optimized BON exhibits a H2O2 yield of 1345.24 μmol·g-1 from pure water and air via two-electron oxygen reduction and two-electron water oxidation reactions, approximately five times higher than the original BON and surpassing the majority of reported piezoelectric catalysts. This work highlights the importance of microstructure control and defect engineering, and emphasizes the crucial role of structure and oxygen vacancy concentration regulation in enhancing the performance of piezoelectric catalysis for H2O2 production. It provides valuable guidance for designing high-performance catalysts tailored for sustainable environmental remediation.

Key words: Bi2O2(OH)NO3, Few-layer structure, Oxygen vacancy, Piezoelectric polarization, H2O2 piezocatalysis