催化学报 ›› 2025, Vol. 77: 20-44.DOI: 10.1016/S1872-2067(25)64787-5

• 综述 • 上一篇    下一篇

适配质子交换膜电解槽的铱基催化剂集成化设计

杨家豪a,b, 施兆平a,b, 邵敏华d,e,f, 肖梅玲a,b,c,*(), 刘长鹏a,b,c,*(), 邢巍a,b,c,*()   

  1. a中国科学院长春应用化学研究所, 电分析化学国家重点实验室, 吉林省低碳化学电源重点实验室, 吉林长春 130022
    b中国科学技术大学应用化学与工程学院, 安徽合肥 230026
    c中国科学院长春应用化学研究所-香港科技大学氢能联合实验室, 吉林长春 130022
    d香港科技大学化学与生物工程系, 香港九龙 999077
    e香港科技大学能源研究院, 中国科学院长春应用化学研究所-香港科技大学氢能联合实验室, 香港九龙 999077
    f香港科技大学霍英东研究院, 广州市电化学储能技术重点实验室, 广东广州 511458
  • 收稿日期:2025-05-15 接受日期:2025-07-07 出版日期:2025-10-18 发布日期:2025-10-05
  • 通讯作者: *电子信箱: mlxiao@ciac.ac.cn (肖梅玲),liuchp@ciac.ac.cn (刘长鹏),xingwei@ciac.ac.cn (邢巍).
  • 基金资助:
    国家重点研发计划(2022YFB4002000);国家自然科学基金(22232004);中国科学院战略性先导科技专项(XDA0400301);吉林省科技发展计划(20240302002ZD);吉林省科技发展计划(20240101019JC);吉林省科技发展计划(20210502002ZP);吉林省发展和改革委员会项目(2023C032-6)

Integrated design of iridium-based catalysts for proton exchange membrane water electrolyzers

Jiahao Yanga,b, Zhaoping Shia,b, Minhua Shaod,e,f, Meiling Xiaoa,b,c,*(), Changpeng Liua,b,c,*(), Wei Xinga,b,c,*()   

  1. aState Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
    bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
    cCIAC - HKUST Joint Laboratory for Hydrogen Energy, Changchun 130022, Jilin, China
    dDepartment of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
    eCIAC-HKUST Joint Laboratory for Hydrogen Energy, Energy Institute, The Hong Kong University of Science and Technology, Clear Watery Bay, Kowloon, Hong Kong 999077, China
    fGuangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, Guangdong, China
  • Received:2025-05-15 Accepted:2025-07-07 Online:2025-10-18 Published:2025-10-05
  • Contact: *E-mail: mlxiao@ciac.ac.cn (M. Xiao), liuchp@ciac.ac.cn (C. Liu), xingwei@ciac.ac.cn (W. Xing).
  • About author:Meiling Xiao received her PhD degree in physical chemistry from the Chinese Academy of Sciences in 2017. She worked at the University of Waterloo as a postdoc and joined Changchun Institute of Applied Chemistry in 2021 as a full professor. She was selected for the Special Talent Program B of CAS and the Outstanding Youth Foundation of Jilin Province. She has published over 40 papers in J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., etc. with over 5100 citations, H-factor 33. Her research interests include single-atom heterogeneous catalysis, fuel cells, and water electrolyzers.
    Changpeng Liu received his PhD in Physical Chemistry in 2002 and was appointed as a professor at the Changchun Institute of Applied Chemistry in 2012. He has successively presided over, undertaken, participated in, and completed several national and provincial-level scientific research projects. His research interests center on catalyst materials within the fuel cell and water electrolysis for hydrogen production systems, electrocatalysis and mass transfer processes, electrode interfaces, and membrane electrodes, the design and assembly of bipolar plate flow fields and fuel cell stacks, water, heat, and energy efficiency management, as well as the integration and application of system devices.
    Wei Xing received his PhD in physical chemistry at the Changchun Institute of Applied Chemistry (CIAC) in 1995. He worked at the Hong Kong Productivity Council (HKPC), researching the electrochemical treatment of metal surfaces. In 2001, he joined the CIAC as a professor and devoted his work to the development of advanced chemical power sources. He has received several awards, including the Jilin Province Science and Technology Award, the Science and Technology Award from the Chemical Industry and Engineering Society of China. He has published over 300 papers in peer-reviewed journals and has applied for more than 50 patents. His research areas currently involve proton exchange membrane fuel cells and water electrolyzers from fundamental electro-catalytic processes to relevant stack/system assembly and testing.
  • Supported by:
    National Key R&D Program of China(2022YFB4002000);National Natural Science Foundation of China(22232004);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA0400301);Jilin Province Science and Technology Development Program(20240302002ZD);Jilin Province Science and Technology Development Program(20240101019JC);Jilin Province Science and Technology Development Program(20210502002ZP);Jilin Province Development and Reform Commission Program(2023C032-6)

摘要:

全球变暖引发的异常高温问题日益严峻, 传统能源渐趋枯竭, 推动社会加速从化石能源驱动向新能源驱动转型, 对新能源的需求愈发迫切. 氢能作为以氢气为载体的能量利用体系, 凭借清洁低碳、能量密度高、可储可运等优势, 在社会能源转型过程中将发挥重要作用. 质子交换膜电解水(PEMWE)因响应快、制备的氢气纯度高、适配可再生能源波动, 成为电-氢连接的核心桥梁, 既能高效地转化风电和光伏的富余电能为氢气储存, 又能为航空航天、高端制造等提供高纯度氢气. 随着其商业化推进, 适配于质子交换膜(PEM)电解槽的阳极析氧反应(OER)铱基催化剂需兼顾高活性、长寿命与低铱使用量的特征, 因此系统梳理其最新进展与设计策略, 对推动PEMWE技术的发展意义重大.

本文系统地总结和分析了适配PEM电解槽的铱基催化剂的集成设计. 首先, 从铱基催化剂的基础原理入手, 包括铱基催化剂的工作环境、在PEM电解槽中的催化性能评价、铱基催化剂的催化与溶解机理. 然后, 在介绍铱基催化剂的分类(金属/氢氧化物/氧化物、掺杂型、负载型、特殊晶体、特殊形貌)的同时, 引入最新的研究成果, 并且特别分析了负载型催化剂的氧溢流现象的种类和案例. 其后, 介绍了铱基催化剂的常见制备方法, 包括铱氧化物类(熔盐法、空气煅烧法、盐模板法)、铱金属类(乙二醇还原法、电化学还原法、氢气还原法)、铱沉淀物类(溶胶-凝胶法、水相水热法、碱水解法). 此外, 总结了铱基催化剂的传统表征技术(三电极体系测试、PEM电解槽测试、体相结构测试、形貌结构测试、表面价态测试、体相价态测试)以及新兴的原位表征技术(差分电化学质谱、原位红外、原位X射线衍射、原位X射线光电子能谱、原位X射线吸收精细结构、原位拉曼、原位透射电子显微镜). 随后, 构建了成本-性能优化的数学框架, 得到与催化剂设计相关的参数(体相密度、铱元素质量分数、催化剂本征活性、催化剂单位面积有效活性位点数、离子导电性、电子导电性), 并且梳理了最新的铱基催化剂设计策略. 最后, 指出铱基催化剂的集成化设计的未来可能研究方向: (1) 针对催化剂实际催化过程中的共存的反应机理, 量化各机理的贡献比例并制定平衡活性与稳定性的策略; (2) 目前原位表征技术局限于低电流密度的三电极体系, 需进一步开发适用于高电流密度的PEM电解槽的原位表征技术; (3) 明确设计策略的激活条件及各策略之间的相互作用; (4) 系统地研究影响PEM电解槽性能评价的各因素间的相互依赖关系, 并建立标准化的测试协议.

综上, 本文系统地总结了PEM电解槽铱基催化剂的基础原理、催化剂分类、制备及表征技术、构建成本-性能优化的数学框架及介绍最新的设计策略, 展望了未来研究方向, 为推动适配PEM电解槽的铱基催化剂的理性设计提供参考.

关键词: 质子交换膜电解水, 析氧反应, 铱基催化剂, 集成化设计, 成本-性能优化

Abstract:

Proton exchange membrane water electrolysis (PEMWE) has garnered significant attention as a pivotal technology for converting surplus electricity into hydrogen for long-term storage, as well as for providing high-purity hydrogen for aerospace and high-end manufacturing applications. With the ongoing commercialization of PEMWE, advancing iridium-based oxygen evolution reaction (OER) catalysts remains imperative to reconcile stringent requirements for high activity, extended longevity, and minimized noble metal loading. The review provides a systematic analysis of the integrated design of iridium-based catalysts in PEMWE, starting from the fundamentals of OER, including the operation environment of OER catalysts, catalytic performance evaluation within PEMWE, as well as catalytic and dissolution mechanisms. Subsequently, the catalyst classification and preparation/characterization techniques are summarized with the focus on the dynamic structure-property relationship. Guided by these understandings, an overview of the design strategies for performance enhancement is presented. Specifically, we construct a mathematical framework for cost-performance optimization to offer quantitative guidance for catalyst design. Finally, future perspectives are proposed, aiming to establish a theoretical framework for rational catalyst design.

Key words: Proton exchange membrane water, electrolysis, Oxygen evolution reaction, Iridium-based catalyst, Integrated design, Cost-performance optimization