催化学报 ›› 2025, Vol. 77: 20-44.DOI: 10.1016/S1872-2067(25)64787-5
杨家豪a,b, 施兆平a,b, 邵敏华d,e,f, 肖梅玲a,b,c,*(), 刘长鹏a,b,c,*(
), 邢巍a,b,c,*(
)
收稿日期:
2025-05-15
接受日期:
2025-07-07
出版日期:
2025-10-18
发布日期:
2025-10-05
通讯作者:
*电子信箱: mlxiao@ciac.ac.cn (肖梅玲),liuchp@ciac.ac.cn (刘长鹏),xingwei@ciac.ac.cn (邢巍).
基金资助:
Jiahao Yanga,b, Zhaoping Shia,b, Minhua Shaod,e,f, Meiling Xiaoa,b,c,*(), Changpeng Liua,b,c,*(
), Wei Xinga,b,c,*(
)
Received:
2025-05-15
Accepted:
2025-07-07
Online:
2025-10-18
Published:
2025-10-05
Contact:
*E-mail: mlxiao@ciac.ac.cn (M. Xiao), liuchp@ciac.ac.cn (C. Liu), xingwei@ciac.ac.cn (W. Xing).
About author:
Meiling Xiao received her PhD degree in physical chemistry from the Chinese Academy of Sciences in 2017. She worked at the University of Waterloo as a postdoc and joined Changchun Institute of Applied Chemistry in 2021 as a full professor. She was selected for the Special Talent Program B of CAS and the Outstanding Youth Foundation of Jilin Province. She has published over 40 papers in J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., etc. with over 5100 citations, H-factor 33. Her research interests include single-atom heterogeneous catalysis, fuel cells, and water electrolyzers.Supported by:
摘要:
全球变暖引发的异常高温问题日益严峻, 传统能源渐趋枯竭, 推动社会加速从化石能源驱动向新能源驱动转型, 对新能源的需求愈发迫切. 氢能作为以氢气为载体的能量利用体系, 凭借清洁低碳、能量密度高、可储可运等优势, 在社会能源转型过程中将发挥重要作用. 质子交换膜电解水(PEMWE)因响应快、制备的氢气纯度高、适配可再生能源波动, 成为电-氢连接的核心桥梁, 既能高效地转化风电和光伏的富余电能为氢气储存, 又能为航空航天、高端制造等提供高纯度氢气. 随着其商业化推进, 适配于质子交换膜(PEM)电解槽的阳极析氧反应(OER)铱基催化剂需兼顾高活性、长寿命与低铱使用量的特征, 因此系统梳理其最新进展与设计策略, 对推动PEMWE技术的发展意义重大.
本文系统地总结和分析了适配PEM电解槽的铱基催化剂的集成设计. 首先, 从铱基催化剂的基础原理入手, 包括铱基催化剂的工作环境、在PEM电解槽中的催化性能评价、铱基催化剂的催化与溶解机理. 然后, 在介绍铱基催化剂的分类(金属/氢氧化物/氧化物、掺杂型、负载型、特殊晶体、特殊形貌)的同时, 引入最新的研究成果, 并且特别分析了负载型催化剂的氧溢流现象的种类和案例. 其后, 介绍了铱基催化剂的常见制备方法, 包括铱氧化物类(熔盐法、空气煅烧法、盐模板法)、铱金属类(乙二醇还原法、电化学还原法、氢气还原法)、铱沉淀物类(溶胶-凝胶法、水相水热法、碱水解法). 此外, 总结了铱基催化剂的传统表征技术(三电极体系测试、PEM电解槽测试、体相结构测试、形貌结构测试、表面价态测试、体相价态测试)以及新兴的原位表征技术(差分电化学质谱、原位红外、原位X射线衍射、原位X射线光电子能谱、原位X射线吸收精细结构、原位拉曼、原位透射电子显微镜). 随后, 构建了成本-性能优化的数学框架, 得到与催化剂设计相关的参数(体相密度、铱元素质量分数、催化剂本征活性、催化剂单位面积有效活性位点数、离子导电性、电子导电性), 并且梳理了最新的铱基催化剂设计策略. 最后, 指出铱基催化剂的集成化设计的未来可能研究方向: (1) 针对催化剂实际催化过程中的共存的反应机理, 量化各机理的贡献比例并制定平衡活性与稳定性的策略; (2) 目前原位表征技术局限于低电流密度的三电极体系, 需进一步开发适用于高电流密度的PEM电解槽的原位表征技术; (3) 明确设计策略的激活条件及各策略之间的相互作用; (4) 系统地研究影响PEM电解槽性能评价的各因素间的相互依赖关系, 并建立标准化的测试协议.
综上, 本文系统地总结了PEM电解槽铱基催化剂的基础原理、催化剂分类、制备及表征技术、构建成本-性能优化的数学框架及介绍最新的设计策略, 展望了未来研究方向, 为推动适配PEM电解槽的铱基催化剂的理性设计提供参考.
杨家豪, 施兆平, 邵敏华, 肖梅玲, 刘长鹏, 邢巍. 适配质子交换膜电解槽的铱基催化剂集成化设计[J]. 催化学报, 2025, 77: 20-44.
Jiahao Yang, Zhaoping Shi, Minhua Shao, Meiling Xiao, Changpeng Liu, Wei Xing. Integrated design of iridium-based catalysts for proton exchange membrane water electrolyzers[J]. Chinese Journal of Catalysis, 2025, 77: 20-44.
Fig. 2. Comparison of the setup frameworks between the three-electrode test system and the PEMWE test system. (a) Schematic diagram of the setup for the three-electrode test system. (b) Schematic diagram of the setup for the PEMWE test system.
Fig. 4. Factors influencing the evaluation of iridium-based catalyst activity in PEMWE electrolyzers. (a) Catalyst loading of oxygen evolution catalysts on the membrane electrode. Reproduced with permission Ref. [39]. Copyright 2016, Elsevier. (b) Content of ionomer used in oxygen evolution catalysts. Reproduced with permission Ref. [40]. Copyright 2010, Elsevier. (c) Thickness of the proton exchange membrane. Reproduced with permission Ref. [41]. Copyright 2024, Elsevier. (d) The coating on the anode titanium felt. Reproduced with permission Ref. [42]. Copyright 2024, Elsevier. (e) Testing the temperature of the electrolyzers. Reproduced with permission Ref. [43]. Copyright 2015, Elsevier.
Fig. 5. Key factors affecting the stability evaluation of iridium-based catalysts in PEMWE. (a) Catalyst loading of oxygen evolution catalysts on the membrane electrode. Reproduced with permission Ref. [47]. Copyright 2024, The American Association for the Advancement of Science. (b) Thickness of the proton exchange membrane. Reproduced with permission Ref. [41]. Copyright 2024, Elsevier. (c) Bubble interference. Reproduced with permission Ref. [48]. Copyright 2024, Elsevier. (d) The coating on the anode titanium felt. Reproduced with permission Ref. [42]. Copyright 2024, Elsevier. (e) Poisoning effects of metal ions. Reproduced with permission Ref. [49]. Copyright 2024, Elsevier.
Fig. 7. Analysis of catalytic elementary reactions and dissolution reactions. (a) Free energy profile of the oxygen evolution reaction under the AEM pathway and its calculation method. (b) Linear constraint relationship under the AEM pathway. (c) Volcano curve of oxygen evolution activity under the AEM pathway. Reproduced with permission Ref. [56]. Copyright 2011, Wiley-VCH. (d) Possible dissolution reactions of iridium-based catalysts. Reproduced with permission Ref. [57]. Copyright 2018, Wiley-VCH.
Fig. 8. Iridium metal and its hydroxides and oxides. (a) Iridium metal. Reproduced with permission Ref. [64]. Copyright 2018, Springer Nature. (b) Iridium hydroxide. Reproduced with permission Ref. [65]. Copyright 2022, American Chemical Society. (c) Amorphous iridium oxide. Reproduced with permission Ref. [66]. Copyright 2024, Wiley-VCH. (d) Rutile-type iridium oxide. Reproduced with permission Ref. [67]. Copyright 2015, Wiley-VCH. (e) 3R-phase iridium oxide. Reproduced with permission Ref. [68]. Copyright 2021, Elsevier. (f) 1T-phase iridium oxide. Reproduced with permission Ref. [69]. Copyright 2021, Springer Nature.
Fig. 9. Doped Ir-based catalysts. (a) Ir0.7Ru0.3Ox catalyst. Reproduced with permission Ref. [86]. Copyright 2017, Elsevier. (b) Mn0.15Ir0.85O2-σ catalyst. Reproduced with permission Ref. [87]. Copyright 2025, Wiley-VCH. (c) Sr-IrOx catalyst. Reproduced with permission Ref. [88]. Copyright 2024, Wiley-VCH. (d) Nb0.05Ir0.95O2 catalyst. Reproduced with permission Ref. [89]. Copyright 2025, Wiley-VCH. (e) B-IrO2 catalyst. Reproduced with permission Ref. [90]. Copyright 2014, Royal Society of Chemistry. (f) Ti-IrOx/Ir catalyst. Reproduced with permission Ref. [91]. Copyright 2023, Elsevier.
Fig. 10. Supported Ir-based catalysts. (a) IrO2/TiO2 catalyst. Reproduced with permission Ref. [109]. Copyright 2024, Elsevier. (b) Ir/Nb2O5-x catalyst. Reproduced with permission Ref. [110]. Copyright 2022, Wiley-VCH. (c) Ir-ZrTaOx catalyst. Reproduced with permission Ref. [111]. Copyright 2023, Elsevier. (d) IrO2@TaOx@TaB catalyst. Reproduced with permission Ref. [112]. Copyright 2024, Wiley-VCH. (e) RIE-Ir/CeOx catalyst. Reproduced with permission Ref. [113]. Copyright 2025, The American Association for the Advancement of Science. (f) IrO2/MnO2 catalyst. Reproduced with permission Ref. [114]. Copyright 2025, Elsevier.
Fig. 11. The spillover of oxygen-containing species for supported Ir-based catalysts. (a) One of the two-site mechanisms. Reproduced with permission Ref. [116]. Copyright 2025, Wiley-VCH. (b) Reverse Spillover for oxygen-containing species. Reproduced with permission Ref. [117]. Copyright 2025, Wiley-VCH. (c) Forward Spillover for oxygen-containing species. Reproduced with permission Ref. [121]. Copyright 2025, Royal Society of Chemistry.
Fig. 12. Multicomponent catalysts with special crystal structures. (a) KIr4O8 catalyst. Reproduced with permission Ref. [122]. Copyright 2024, Wiley-VCH. (b) Crystal structures of single and double perovskites. Reproduced with permission Ref. [126]. Copyright 2020, Wiley-VCH. (c) SrTi0.25Ir0.75O? catalyst. Reproduced with permission Ref. [127]. Copyright 2025, Elsevier. (d) Sr2CaIrO6 catalyst. Reproduced with permission Ref. [128]. Copyright 2022, Springer Nature.
Fig. 13. Special morphological structures. (a) Hollow IrOx nanospheres. Reproduced with permission Ref. [129]. Copyright 2025, Wiley-VCH. (b) Au-doped IrO2 nanoribbons. Reproduced with permission Ref. [100]. Copyright 2025, Royal Society of Chemistry. (c) Highly porous Ir0.7Ru0.3O2. Reproduced with permission Ref. [130]. Copyright 2019, Wiley-VCH. (d) HxIrOy nanosheets. Reproduced with permission Ref. [131]. Copyright 2025, Wiley-VCH. (e) Woodpile-structured Ir. Reproduced with permission Ref. [132]. Copyright 2020, Springer Nature.
Fig. 15. Common characterization techniques for oxygen evolution catalysts: (a) Three-electrode testing. Reproduced with permission Ref. [148]. Copyright 2019, American Chemical Society. (b) PEMWE electrolyzers testing. Reproduced with permission Ref. [153]. Copyright 2020, Elsevier. (c) XRD testing. Reproduced with permission Ref. [122]. Copyright 2024, Wiley-VCH. (d) Morphological structure-related testing. Reproduced with permission Ref. [154]. Copyright 2019, Elsevier. (e) XPS testing. Reproduced with permission Ref. [155]. Copyright 2011, Royal Society of Chemistry. (f) XAFS testing. Reproduced with permission Ref. [156]. Copyright 2018, Springer Nature.
Fig. 16. Emerging in-situ characterization techniques for oxygen evolution catalysts. (a) In-situ DEMS analysis. Reproduced with permission Ref. [159]. Copyright 2021, Elsevier. (b) In-situ IR spectroscopy. Reproduced with permission Ref. [160]. Copyright 2025, Wiley-VCH. (c) In-situ XRD analysis. Reproduced with permission Ref. [161]. Copyright 2023, Springer Nature. (d) In-situ XPS. Reproduced with permission Ref. [162]. Copyright 2014, Wiley-VCH. (e) In-situ XAFS spectroscopy. Reproduced with permission Ref. [163]. Copyright 2019, American Chemical Society. (f) In-situ Raman spectroscopy. Reproduced with permission Ref. [164]. Copyright 2021, American Chemical Society. (g) In-situ TEM. Reproduced with permission Ref. [128]. Copyright 2022, Springer Nature.
Fig. 17. A mathematical framework for low-iridium catalyst design. (a) Iridium loading analysis in anode catalysts. (b) Driving voltage analysis of PEMWE cells under conventional testing conditions (80 °C, 1 atm). (c) Correlation analysis between iridium loading and driving voltage. (d) Intrinsic property parameters of iridium-based catalysts in formulas linking driving voltage and iridium loading.
Fig. 18. Activity regulation strategies for oxygen evolution catalysts in PEMWE electrolyzers. (a) Optimization of adsorption energy of active sites in the AEM pathway. Reproduced with permission Ref. [166]. Copyright 2025, Springer Nature. (b) Promotion of the LOM pathway. Reproduced with permission Ref. [167]. Copyright 2024, Wiley-VCH. (c) Promotion of the oxygen evolution pathway (OPM). Reproduced with permission Ref. [168]. Copyright 2025, American Chemical Society. (d) Increase in the number of active sites. Reproduced with permission Ref. [169]. Copyright 2024, Wiley-VCH. (e) Maintaining the high conductivity of the catalyst. Reproduced with permission Ref. [170]. Copyright 2024, American Chemical Society.
Fig. 19. Stability regulation strategies for oxygen evolution catalysts in PEMWE electrolyzers. (a) Assessing the intrinsic stability of elements through Pourbaix diagrams. Reproduced with permission Ref. [172]. Copyright 2020, American Chemical Society. (b) Determining the structural stability of catalysts by calculating the formation energy of oxygen vacancies. Reproduced with permission Ref. [87]. Copyright 2025, Wiley-VCH. (c) Design strategies based on compositional effects. Reproduced with permission Ref. [173]. Copyright 2024, Wiley-VCH. (d) Design strategies based on anchoring effects. Reproduced with permission Ref. [146]. Copyright 2023, Springer Nature. (e) Design strategies based on hydroxylation effects. Reproduced with permission Ref. [174]. Copyright 2024, Springer Nature. (f) Design strategies based on self-healing effects. Reproduced with permission Ref. [175]. Copyright 2025, Wiley-VCH.
|
[1] | 王舟舟, 周前程, 罗丽, 史雅然, 李浩然, 王春春, 林可聖, 王成思, 朱利兵, 韩凌云, 邢卓, 余颖. 钨掺杂稳定钼酸钴的钴-氧-钼点对点连接结构用于中性析氧反应[J]. 催化学报, 2025, 76(9): 146-158. |
[2] | 张冰洁, 王春燕, 杨甫林, 王书莉, 冯立纲. 功函数差异自发诱导Ir/MoSe2内置电场催化高效PEM水电解[J]. 催化学报, 2025, 75(8): 95-104. |
[3] | 代继澳, 鲜靖林, 刘凯思, 吴植傲, 樊淼, 覃姝彤, 姜会钰, 徐卫林, 金桓宇, 万骏. 非常规亚稳态立方相二维LaMnO3用于高效碱性海水析氧反应[J]. 催化学报, 2025, 74(7): 228-239. |
[4] | 王效阳, 傅梓淇, 罗子怡, 刘威迪, 丁佳, 曾建荣, 陈亚楠, 胡文彬. 同时实现Pt/C催化剂的超高载量和超细粒径[J]. 催化学报, 2025, 74(7): 425-437. |
[5] | 张朋祥, 王佳雯, 杨天宇, 王瑞哲, 沈若凡, 彭智昆, 刘艳艳, 武现丽, 蒋剑春, 李保军. 揭示复杂性: 析氧反应机理研究进展[J]. 催化学报, 2025, 72(5): 48-83. |
[6] | 关志星, 张颖, 冯芳芳, 李朝辉, 刘艳莉, 吴梓峰, 郑兴兴, 扶雄辉, 张渊明, 廖文彬, 陈嘉璐, 刘宏光, 朱毅, 魏永革. 在BiVO4光阳极上构建局域电场以促进水氧化过程中的质子转移[J]. 催化学报, 2025, 72(5): 176-186. |
[7] | 肖丽媛, 白雪, 韩璟怡, 王振旅, 管景奇. 通过掺杂工程调整Ni-Fe氢氧化物的d带电子结构以提升海水氧化性能[J]. 催化学报, 2025, 71(4): 340-352. |
[8] | 张波, 肖如, 刘利媛, 刘晓斌, 邓英, 吕清良, 吴则星, 杜云梅, 黎艳艳, 肖振宇, 王磊. 氯腐蚀策略: 分钟级构筑氯功能化Ni/Fe-LDH, 以提升抗氯OER性能[J]. 催化学报, 2025, 70(3): 388-398. |
[9] | 孙艺萌, 陈军, 刘琳, 池海波, 韩洪宪. 原子级铱掺杂增强γ-MnO2析氧活性和稳定性的机理研究[J]. 催化学报, 2025, 69(2): 99-110. |
[10] | 陈明星, 杜子翯, 刘念, 李慧杰, 齐静, 上官恩波, 李晶, 曹嘉豪, 杨树姣, 张伟, 曹睿. 阴阳离子调节策略激活晶格氧促进析氧性能[J]. 催化学报, 2025, 69(2): 282-291. |
[11] | 陈宇辉, 郭从宝, 王毅, 王昆, 宋树芹. 磁控溅射制备高熵尖晶石氧化物薄膜并用于高效电催化碱性析氧反应[J]. 催化学报, 2025, 77(10): 210-219. |
[12] | 谢旻斐, 姬星, 孟华颖, 姜南冰, 罗贞玉, 黄千千, 孙耿, 张云怀, 肖鹏. 赤铁矿光阳极界面钛原子在析氧反应多位点机制中的作用: 反应活性位点还是助催化位点?[J]. 催化学报, 2024, 64(9): 77-86. |
[13] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
[14] | 吕青芸, 张伟伟, 龙志鹏, 王建涛, 邹星礼, 任伟, 侯龙, 鲁雄刚, 赵玉峰, 余兴, 李喜. Fe稳固的FeOOH@NiOOH电催化剂的大电流极化设计与析氧研究[J]. 催化学报, 2024, 62(7): 254-264. |
[15] | 郭静雅, 刘炜, 商文喆, 司端惠, 朱超, 胡金文, 辛存存, 程旭升, 张松林, 宋俗禅, 王秀云, 史彦涛. 完全暴露的碳基电极边缘-平面位点用于高效水氧化[J]. 催化学报, 2024, 60(5): 272-283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||