催化学报 ›› 2026, Vol. 81: 9-36.DOI: 10.1016/S1872-2067(25)64894-7

• 综述 • 上一篇    下一篇

提升光电化学水分解的创新策略与视角: 物理场工程

李文峰, 吕国诚(), 刘梦, 赵繁月, 和泽田, 李桂红, 王文萍, 廖立兵, 陈代梅()   

  1. 中国地质大学(北京)材料科学与工程学院, 矿物材料国家专业实验室, 非金属矿物与固废资源材料化利用北京市重点实验室, 地质碳储与资源低碳利用教育部工程研究中心, 河北省资源低碳利用及新材料重点实验室, 北京 100083
  • 收稿日期:2025-07-02 接受日期:2025-09-15 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: guochenglv@cugb.edu.cn (吕国诚),chendaimei@cugb.edu.cn (陈代梅).
  • 基金资助:
    国家自然科学基金(21978276)

Innovative strategies and perspectives for enhancing photoelectrochemical water splitting: Physical field engineering

Wenfeng Li, Guocheng Lv(), Meng Liu, Fanyue Zhao, Zetian He, Guihong Li, Wenping Wang, Libing Liao, Daimei Chen()   

  1. Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, Hebei Key Laboratory of Resource Low-carbon Utilization and New Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2025-07-02 Accepted:2025-09-15 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: guochenglv@cugb.edu.cn (G. Lv),chendaimei@cugb.edu.cn (D. Chen).
  • About author:Guocheng Lv received his PhD degree from Beijing University of Chemical Technology and is now a professor and dean of the School of Materials Science and Engineering at China University of Geosciences (Beijing). His research interests mainly include mineral functional materials, environmental materials, new energy materials and comprehensive utilisation of mineral resources.
    Daimei Chen received her PhD from Tianjin University and is now a PhD supervisor at the School of Materials Science and Engineering, China University of Geosciences (Beijing). Her research interests include the development of photocatalysis, electrocatalysis and photoelectrocatalytic energy and environmental materials.
  • Supported by:
    National Natural Science Foundation of China(21978276)

摘要:

在全球能源转型与碳中和的大背景下, 开发高效、清洁的可再生能源转换技术至关重要. 太阳能驱动下的光电化学水分解技术, 能够直接将太阳能转化为可储存的氢能, 被视为实现绿色可持续能源供给的理想路径之一. 尽管经过几十年研究, 该技术在实际应用中仍面临关键瓶颈: 半导体光电极的光吸收范围有限、光生电子-空穴对易复合以及表面催化反应动力学缓慢, 这些因素共同导致太阳能-氢能转换效率难以突破. 传统材料改性策略, 如能带工程、纳米结构调控及助催化剂负载等, 虽取得一定成效, 但往往难以同步优化载流子的体相分离与界面反应过程. 因此, 迫切需要开发创新策略以协同解决上述瓶颈, 推动光电催化技术的实际应用.

本文系统性地综述了利用外部物理场(包括热场、压电场、磁场及其耦合场)增强光电化学水分解性能的最新研究进展与内在机制. 首先, 深入探讨了不同物理场的作用原理: 热场通过光热效应提升体系局部温度, 不仅增强了载流子的本征激发, 更有效加速了其迁移速率; 而基于热释电效应, 温度变化可在热释电材料中诱导出热释电极化电场, 驱动电荷分离. 压电场则源于应变(压电效应)或铁电极化, 能在半导体内部构建强大的内置电场, 从热力学上为光生电子和空穴的分离提供强劲驱动力. 磁场则可通过负磁阻效应降低材料电阻、通过洛伦兹力偏转电荷运动轨迹、或通过诱导自旋极化来延长载流子寿命, 多途径抑制其复合. 详细分析了这些物理场如何作用于光电催化过程的各个关键环节, 包括光吸收、载流子激发、传输、分离以及表面的析氢/析氧反应. 还讨论了多种外部物理场耦合对载流子行为的协同增强效应. 例如, 磁场和热场耦合产生的匹配的磁热效应可协同促进载流子分离, 压电和热释电场的适配机制产生同一方向的极化电场为载流子分离提供了更强的驱动力. 这些机理分析表明, 外部物理场能够非接触式地、精准地干预光吸收、电荷激发、传输、分离乃至表面反应的全过程, 实现“体相分离”与“界面反应”的协同优化. 基于深入的机理论证, 外部物理场辅助策略是一种极具潜力的高效光电催化系统构建方法, 其通过引入额外的物理驱动力, 能够突破单一材料本身的性能极限, 为未来设计高性能光电催化体系提供了全新的方向.

展望未来, 本领域的研究需聚焦于多场耦合机制的精准解析、智能响应材料的设计及规模化应用探索. 本文通过系统梳理外部物理场的增强机制与协同效应, 为构建下一代高效光电催化水分解系统提供了重要的理论框架和设计指南, 有望加速该技术从基础研究走向实际应用的进程.

关键词: 光电催化水分解, 热场, 磁场, 压电场, 多物理场

Abstract:

Photoelectrochemical (PEC) water splitting efficiently produces chemical fuels, yet persistent efficiency bottlenecks impede widespread deployment despite documented advances. In recent years, the introduction of external physical fields has emerged as a promising technique to remarkably improve the PEC performances of semiconductors both internally and externally. This review presents an in-depth exploration of the mechanisms underlying the utilization of thermal field (photothermal, pyroelectric effect), piezoelectric field (strain piezoelectricity, ferroelectric polarization), magnetic field (negative magnetoresistive effect, lorentz forces, spin polarization), and coupled fields in enhancing the synergistic effects of PEC water splitting, and subsequently analyzes their influence on the performance of PEC systems. It particularly emphasizes the underlying mechanisms that facilitate the strengthening of external fields on the excitation, transfer, and separation of carriers, as well as the enhancement of surface reactions. Additionally, we delve into the expansive prospects of externally assisted PEC water splitting, examining both its fundamental research implications and practical applications. Finally, we discuss the challenges encountered in its development and offer insights into potential future directions.

Key words: Photoelectrochemical water splitting, Thermal field, Magnetic field, Piezoelectric field, Multiphysics field