催化学报 ›› 2026, Vol. 81: 9-36.DOI: 10.1016/S1872-2067(25)64894-7
李文峰, 吕国诚(
), 刘梦, 赵繁月, 和泽田, 李桂红, 王文萍, 廖立兵, 陈代梅(
)
收稿日期:2025-07-02
接受日期:2025-09-15
出版日期:2026-02-18
发布日期:2025-12-26
通讯作者:
*电子信箱: guochenglv@cugb.edu.cn (吕国诚),chendaimei@cugb.edu.cn (陈代梅).
基金资助:
Wenfeng Li, Guocheng Lv(
), Meng Liu, Fanyue Zhao, Zetian He, Guihong Li, Wenping Wang, Libing Liao, Daimei Chen(
)
Received:2025-07-02
Accepted:2025-09-15
Online:2026-02-18
Published:2025-12-26
Contact:
*E-mail: guochenglv@cugb.edu.cn (G. Lv),chendaimei@cugb.edu.cn (D. Chen).
About author:Guocheng Lv received his PhD degree from Beijing University of Chemical Technology and is now a professor and dean of the School of Materials Science and Engineering at China University of Geosciences (Beijing). His research interests mainly include mineral functional materials, environmental materials, new energy materials and comprehensive utilisation of mineral resources.Supported by:摘要:
在全球能源转型与碳中和的大背景下, 开发高效、清洁的可再生能源转换技术至关重要. 太阳能驱动下的光电化学水分解技术, 能够直接将太阳能转化为可储存的氢能, 被视为实现绿色可持续能源供给的理想路径之一. 尽管经过几十年研究, 该技术在实际应用中仍面临关键瓶颈: 半导体光电极的光吸收范围有限、光生电子-空穴对易复合以及表面催化反应动力学缓慢, 这些因素共同导致太阳能-氢能转换效率难以突破. 传统材料改性策略, 如能带工程、纳米结构调控及助催化剂负载等, 虽取得一定成效, 但往往难以同步优化载流子的体相分离与界面反应过程. 因此, 迫切需要开发创新策略以协同解决上述瓶颈, 推动光电催化技术的实际应用.
本文系统性地综述了利用外部物理场(包括热场、压电场、磁场及其耦合场)增强光电化学水分解性能的最新研究进展与内在机制. 首先, 深入探讨了不同物理场的作用原理: 热场通过光热效应提升体系局部温度, 不仅增强了载流子的本征激发, 更有效加速了其迁移速率; 而基于热释电效应, 温度变化可在热释电材料中诱导出热释电极化电场, 驱动电荷分离. 压电场则源于应变(压电效应)或铁电极化, 能在半导体内部构建强大的内置电场, 从热力学上为光生电子和空穴的分离提供强劲驱动力. 磁场则可通过负磁阻效应降低材料电阻、通过洛伦兹力偏转电荷运动轨迹、或通过诱导自旋极化来延长载流子寿命, 多途径抑制其复合. 详细分析了这些物理场如何作用于光电催化过程的各个关键环节, 包括光吸收、载流子激发、传输、分离以及表面的析氢/析氧反应. 还讨论了多种外部物理场耦合对载流子行为的协同增强效应. 例如, 磁场和热场耦合产生的匹配的磁热效应可协同促进载流子分离, 压电和热释电场的适配机制产生同一方向的极化电场为载流子分离提供了更强的驱动力. 这些机理分析表明, 外部物理场能够非接触式地、精准地干预光吸收、电荷激发、传输、分离乃至表面反应的全过程, 实现“体相分离”与“界面反应”的协同优化. 基于深入的机理论证, 外部物理场辅助策略是一种极具潜力的高效光电催化系统构建方法, 其通过引入额外的物理驱动力, 能够突破单一材料本身的性能极限, 为未来设计高性能光电催化体系提供了全新的方向.
展望未来, 本领域的研究需聚焦于多场耦合机制的精准解析、智能响应材料的设计及规模化应用探索. 本文通过系统梳理外部物理场的增强机制与协同效应, 为构建下一代高效光电催化水分解系统提供了重要的理论框架和设计指南, 有望加速该技术从基础研究走向实际应用的进程.
李文峰, 吕国诚, 刘梦, 赵繁月, 和泽田, 李桂红, 王文萍, 廖立兵, 陈代梅. 提升光电化学水分解的创新策略与视角: 物理场工程[J]. 催化学报, 2026, 81: 9-36.
Wenfeng Li, Guocheng Lv, Meng Liu, Fanyue Zhao, Zetian He, Guihong Li, Wenping Wang, Libing Liao, Daimei Chen. Innovative strategies and perspectives for enhancing photoelectrochemical water splitting: Physical field engineering[J]. Chinese Journal of Catalysis, 2026, 81: 9-36.
Fig. 1. Development process of external field-assisted PEC technology. Reproduced with permission from Ref. [52], Copyright 1972, Springer Nature. Reproduced with permission from Ref. [34]. Copyright 1985, AlP Publishing. Reproduced with permission from Ref. [35]. Copyright 1998, john Wiley and sons. Reproduced with permission from Ref. [38]. Copyright 2001, Elsevier. Reproduced with permission from Ref. [39]. Copyright 2003, Elsevier. Reproduced with permission from Ref. [40]. Copyright 2011, American Chemical society. Reproduced with permission from Ref. [41]. Copyright 2015, American Chemical society. Reproduced with permission from Ref. [42]. Copyright 2021, Elsevier. Reproduced with permission from Ref. [43]. Copyright 2023, Elsevier.
Fig. 4. Semiconductor band edge alignment, spectral absorption ranges, along with the redox potentials associated with the production of H2 and O2 through water splitting.
Fig. 5. (a) Thermal field enhanced PEC water splitting mechanism. (b) Illustration of photothermal conversion. (c) The illustration of pyro-PEC process.
Fig. 6. (a) Schematic diagram of Co3O4 photothermal layer in PEC system. (b) Infrared images of Co3O4/BiVO4 in electrolyte solution. UV-vis diffuse reflectance spectroscopy (c) and Tauc plots (d) of samples. (e) Mott-Schottky plots. (f) TEM images of ZnFe2O4/Fe2O3. Reproduced with permission from Ref. [121]. Copyright 2021, john Wiley and Sons. (g) Infrared images of samples under NIR irradiation for 10 min. (h) EIS spectra of photoanodes. (i) LSV curves. Reproduced with permission from Ref. [124]. Copyright 2023, Wiley. (j) TEM images of the ZnIn2S4/WO3-C-wood. (k) The infrared image of ZnIn2S4/WO3-C-wood. (l,m) Calculated Gibbs free energies for the HER on ZnIn2S4 and the OER on WO3, evaluated in 298 and 373 K. Reproduced with permission from Ref. [127]. Copyright 2021, Wiley. (n) Temperature dependent LSV curves of GS/NiFe alloy/NiFe LDH catalyzed OER in 1.0 mol L?1 KOH. Inset: Arrhenius plots. (o) Plots of the overpotential-dependent activation energy (W) against the reaction overpotential. (p) Thermal image. (q) Corresponding temperature profile photoanode in the electrolyte. (r) Temperature-dependent LSV curves. Reproduced with permission from Ref. [128]. Copyright 2023, Springer Nature.
Fig. 7. (a) Thermal imaging of samples. (b) Synergistic mechanism of PEC and photothermal effects. (c) Hydrogen production rate of samples. Reproduced with permission from Ref. [103]. Copyright 2022, Royal Society of Chemistry. (d) Schematic illustration of 45-Cu2S/MoS2/Pt-100s. (e) Infrared thermal images of samples under NIR illumination for 300 s. (f) EIS curves. (g) The schematic PEC hydrogen production mechanism. (h) Overpotentials (at 10 mA cm?2). (i) LSV plots. (j) ABPE curves. Reproduced with permission from Ref. [104]. Copyright 2022, Elsevier.
Fig. 8. (a) SEM image of NaNbO3. (b) Illustration of pyroelectric catalysis mechanism. (c) I-T curve under hot-cold cycle conditions. (d) The principle of pyro-photo-electric catalysis system. (e) Mott-Schottky plots. (f) EIS curve of NaNbO3 under various conditions. (g) Schematic diagram of pyroelectric-PEC. (h) I-V curves. Reproduced with permission from Ref. [36]. Copyright 2021, Elsevier. (i) Schematic representation of the crystalline lattice arrangements in samples exhibiting varying K:Na ratios. (j) Schematic illustration of the synergistic process for water splitting through the combined action of pyroelectric and PEC process. (k) J-V curves of sample under light + ΔT. (l) Illustration of oxygen vacancies. Reproduced with permission from Ref. [135]. Copyright 2022, Elsevier. (m) EPR diagram of BaTiO3 and BaTiO3?x-5% samples. (n) Illustration of pyroelectric catalysis. (o) LSV curves of samples under light illumination and thermal cycle. Reproduced with permission from Ref. [136]. Copyright 2022, Elsevier.
| External field | Materials | Temp. profile | Condition | J (mA cm‒2) | Production rate | Faradic efficiency | Stability | Enhancement in external field | Ref. | |
|---|---|---|---|---|---|---|---|---|---|---|
| Photothermal | Cu2S/MoS2/Pt | 44.3 °C (300s NIR) | AM 1.5 G + NIR+ Na2SO4 (0.5 mol L‒1) | ‒2.31 @ 0 V | — | — | 20 h | ×1.9 | [ | |
| Photothermal | ZnO/MXene | 29.7 °C (300s NIR) | AM 1.5 G + NIR+ NaOH (0.1 mol L‒1) | 1.01 @1.23 V | — | — | 1 h | ×1.17 | [ | |
| Photothermal | Bi2S3/WO3 | 32 °C (600s NIR) | AM 1.5 G +NIR+Na2SO3 and Na2S (0.5 mol L‒1) | 4.05 @1.23 V | — | — | — | ×1.2 | [ | |
| Photothermal | CdIn2S4/Ni-PPy | ’38.0 °C (300s NIR) | AM 1.5 G + NIR+ Na2SO4 (0.5 mol L‒1) | 6.07 @1.23 V | — | — | — | ×1.6 | [ | |
| Photothermal | NiCo2O4/TiO2 | 43.2 °C (250s NIR) | AM 1.5 G + NIR+ NaOH (1 mol L‒1) | 2.34 @1.23 V | H2: 103.0 O2: 49.9 μmol cm‒2/2.5 h at 1.23 VRHE | 93.2% | 8 h | ×1.3 | [ | |
| Photothermal | Co-Pi/CQDs/ Fe2O3/TiO2 | 44.6 °C (300s NIR) | AM 1.5 G + NIR+ NaOH (1 mol L‒1) | 3.0 @ 1.23 V | H2:63 O2: 30 μmol cm‒2/3 h at 1.23 VRHE | 92.1% | 11000 s | ×1.8 | [ | |
| Photothermal | ZnFe2O4/Fe2O3 | 40.6 °C (600s NIR) | AM 1.5 G + NIR+ NaOH (1 mol L‒1) | 3.17 @1.23 V | H2: 120.92 O2: 59.63 μmol cm‒2/3 h at 1.23 VRHE | 96.8% | 3 h | ×2.1 | [ | |
| Photothermal | (Ti,Zn)-Fe2O3@Ti-Fe2O3@C&Co-Pi | 42 °C (350s NIR) | AM 1.5 G + NIR+ NaOH (1 mol L‒1) | 1.02 @1.23 V | H2: 103.0 O2: 49.9 μmol cm‒2/2.5 h‒1 at 1.23 VRHE | 92.1% | — | ×1.3 | [ | |
| Photothermal | Co-Pi/PPy/BiVO4 | 44.6 °C (120s NIR) | AM 1.5 G + NIR + KPi (0.5 mol L‒1) | 3.64 @1.23 V | H2: 9 O2: 4.5 μmol cm‒2/500 s‒1 at 1.23 VRHE | 96.2% | 2400 s | ×1.13 | [ | |
| Photothermal | Co-Pi/PANI/BiVO4 | 36.8 °C (300s NIR) | AM 1.5 G + NIR+ KPi (0.5 mol L‒1) | 4.05 @1.23 V | H2: 213 O2: 90 μmol cm‒2/2 h‒1 at 1.23 VRHE | 96% | 7500 s | ×1.4 | [ | |
| Photothermal | NiCo2O4/BiVO4 | 55 °C (120s NIR) | AM 1.5 G + NIR+ KPi (0.5 mol L‒1) | 6.20 @1.23 V | H2: 180 O2: 90 μmol cm‒2/2 h‒1 at 0.6 VRHE | 97.3% | 4 h | ×1.23 | [ | |
| Photothermal | NiOOH/FeOOH/ Co3O4/BiVO4 | 37.4 °C (300s NIR) | AM 1.5 G + NIR+ KPi (0.5 mol L‒1) | 6.34 @1.23 V | H2: 190 O2: 95 μmol cm‒2/2 h‒1 at 1.0 VRHE | 93% | 4 h | ×1.4 | [ | |
| Hot-cold water bath cycle | CdS | 20‒50 °C | AM 1.5 G + Na2SO4 (0.5 mol L‒1) | 3.93 @1.23 V | H2: 522 μmol g‒1/30 min | — | 10 h | ×16.8 | [ | |
| Hot-cold water bath cycle | KxNa1‒xNbO3 | 20‒50 °C | AM 1.5 G + Na2SO4 (1 mol L‒1) | 0.528 @1.23 V | — | — | — | ×2.2 | [ | |
| Hot-cold water bath cycle | BiOIO3 | 20‒50 °C | AM 1.5 G + Na2SO4 (1 mol L‒1) | 0.134 μA @1.23 V | — | — | 300 s | ×1.4 | [ | |
| Hot-cold water bath cycle | BaTiO3 | 20‒50 °C | AM 1.5 G+ Na2SO4 (1 mol L‒1) | 0.38 @1.23 V | H2: 13.44 O2: 6.8 μmol cm‒2/2 h‒1 at 1.23 VRHE | — | — | ×2.2 | [ | |
| Hot-cold water bath cycle | NaNbO3 | 20‒50 °C | AM 1.5 G + Na2SO4 (1 mol L‒1) | 0.37 @1.23 V | — | — | 540 s | ×1.6 | [ | |
| Hot-cold water bath cycle | CdS/Sb2S3 | 20‒50 °C | AM 1.5 G + Na2SO4 (1 M) | 4.51 @1.23 V | — | — | 12 h | ×1.4 | [ | |
| Hot-cold water bath cycle | CdS/In2S3 | 20‒50 °C | AM 1.5 G + Na2SO4 (1 mol L‒1) | 3.52 @1.23 V | — | — | 4 h | ×3.5 | [ | |
| Hot-cold water bath cycle | BaTiO3−x | 20‒50 °C | AM 1.5 G+ Na2SO4 (0.5 mol L‒1) | 0.77 @1.23 V | — | — | — | ×1.13 | [ | |
| Hot-cold water bath cycle | NaNbO(3−x)-S | 20‒50 °C | AM 1.5 G+ Na2SO4 (1 mol L‒1) | 0.574 @1.23 V | — | — | — | ×2.1 | [ |
Table 1 Comparative assessment of thermal field-PEC water splitting application studies.
| External field | Materials | Temp. profile | Condition | J (mA cm‒2) | Production rate | Faradic efficiency | Stability | Enhancement in external field | Ref. | |
|---|---|---|---|---|---|---|---|---|---|---|
| Photothermal | Cu2S/MoS2/Pt | 44.3 °C (300s NIR) | AM 1.5 G + NIR+ Na2SO4 (0.5 mol L‒1) | ‒2.31 @ 0 V | — | — | 20 h | ×1.9 | [ | |
| Photothermal | ZnO/MXene | 29.7 °C (300s NIR) | AM 1.5 G + NIR+ NaOH (0.1 mol L‒1) | 1.01 @1.23 V | — | — | 1 h | ×1.17 | [ | |
| Photothermal | Bi2S3/WO3 | 32 °C (600s NIR) | AM 1.5 G +NIR+Na2SO3 and Na2S (0.5 mol L‒1) | 4.05 @1.23 V | — | — | — | ×1.2 | [ | |
| Photothermal | CdIn2S4/Ni-PPy | ’38.0 °C (300s NIR) | AM 1.5 G + NIR+ Na2SO4 (0.5 mol L‒1) | 6.07 @1.23 V | — | — | — | ×1.6 | [ | |
| Photothermal | NiCo2O4/TiO2 | 43.2 °C (250s NIR) | AM 1.5 G + NIR+ NaOH (1 mol L‒1) | 2.34 @1.23 V | H2: 103.0 O2: 49.9 μmol cm‒2/2.5 h at 1.23 VRHE | 93.2% | 8 h | ×1.3 | [ | |
| Photothermal | Co-Pi/CQDs/ Fe2O3/TiO2 | 44.6 °C (300s NIR) | AM 1.5 G + NIR+ NaOH (1 mol L‒1) | 3.0 @ 1.23 V | H2:63 O2: 30 μmol cm‒2/3 h at 1.23 VRHE | 92.1% | 11000 s | ×1.8 | [ | |
| Photothermal | ZnFe2O4/Fe2O3 | 40.6 °C (600s NIR) | AM 1.5 G + NIR+ NaOH (1 mol L‒1) | 3.17 @1.23 V | H2: 120.92 O2: 59.63 μmol cm‒2/3 h at 1.23 VRHE | 96.8% | 3 h | ×2.1 | [ | |
| Photothermal | (Ti,Zn)-Fe2O3@Ti-Fe2O3@C&Co-Pi | 42 °C (350s NIR) | AM 1.5 G + NIR+ NaOH (1 mol L‒1) | 1.02 @1.23 V | H2: 103.0 O2: 49.9 μmol cm‒2/2.5 h‒1 at 1.23 VRHE | 92.1% | — | ×1.3 | [ | |
| Photothermal | Co-Pi/PPy/BiVO4 | 44.6 °C (120s NIR) | AM 1.5 G + NIR + KPi (0.5 mol L‒1) | 3.64 @1.23 V | H2: 9 O2: 4.5 μmol cm‒2/500 s‒1 at 1.23 VRHE | 96.2% | 2400 s | ×1.13 | [ | |
| Photothermal | Co-Pi/PANI/BiVO4 | 36.8 °C (300s NIR) | AM 1.5 G + NIR+ KPi (0.5 mol L‒1) | 4.05 @1.23 V | H2: 213 O2: 90 μmol cm‒2/2 h‒1 at 1.23 VRHE | 96% | 7500 s | ×1.4 | [ | |
| Photothermal | NiCo2O4/BiVO4 | 55 °C (120s NIR) | AM 1.5 G + NIR+ KPi (0.5 mol L‒1) | 6.20 @1.23 V | H2: 180 O2: 90 μmol cm‒2/2 h‒1 at 0.6 VRHE | 97.3% | 4 h | ×1.23 | [ | |
| Photothermal | NiOOH/FeOOH/ Co3O4/BiVO4 | 37.4 °C (300s NIR) | AM 1.5 G + NIR+ KPi (0.5 mol L‒1) | 6.34 @1.23 V | H2: 190 O2: 95 μmol cm‒2/2 h‒1 at 1.0 VRHE | 93% | 4 h | ×1.4 | [ | |
| Hot-cold water bath cycle | CdS | 20‒50 °C | AM 1.5 G + Na2SO4 (0.5 mol L‒1) | 3.93 @1.23 V | H2: 522 μmol g‒1/30 min | — | 10 h | ×16.8 | [ | |
| Hot-cold water bath cycle | KxNa1‒xNbO3 | 20‒50 °C | AM 1.5 G + Na2SO4 (1 mol L‒1) | 0.528 @1.23 V | — | — | — | ×2.2 | [ | |
| Hot-cold water bath cycle | BiOIO3 | 20‒50 °C | AM 1.5 G + Na2SO4 (1 mol L‒1) | 0.134 μA @1.23 V | — | — | 300 s | ×1.4 | [ | |
| Hot-cold water bath cycle | BaTiO3 | 20‒50 °C | AM 1.5 G+ Na2SO4 (1 mol L‒1) | 0.38 @1.23 V | H2: 13.44 O2: 6.8 μmol cm‒2/2 h‒1 at 1.23 VRHE | — | — | ×2.2 | [ | |
| Hot-cold water bath cycle | NaNbO3 | 20‒50 °C | AM 1.5 G + Na2SO4 (1 mol L‒1) | 0.37 @1.23 V | — | — | 540 s | ×1.6 | [ | |
| Hot-cold water bath cycle | CdS/Sb2S3 | 20‒50 °C | AM 1.5 G + Na2SO4 (1 M) | 4.51 @1.23 V | — | — | 12 h | ×1.4 | [ | |
| Hot-cold water bath cycle | CdS/In2S3 | 20‒50 °C | AM 1.5 G + Na2SO4 (1 mol L‒1) | 3.52 @1.23 V | — | — | 4 h | ×3.5 | [ | |
| Hot-cold water bath cycle | BaTiO3−x | 20‒50 °C | AM 1.5 G+ Na2SO4 (0.5 mol L‒1) | 0.77 @1.23 V | — | — | — | ×1.13 | [ | |
| Hot-cold water bath cycle | NaNbO(3−x)-S | 20‒50 °C | AM 1.5 G+ Na2SO4 (1 mol L‒1) | 0.574 @1.23 V | — | — | — | ×2.1 | [ |
Fig. 9. Comparative assessment of thermal field-PEC water splitting application studies. Data collected from Refs. [36,95,104,109,115,117,118,121,123,124,132,134-142].
Fig. 10. (a) Schematic diagram of multiple piezoelectric field-assisted PEC water splitting. (b) Piezoelectric semiconductors under strain-free, tensile and compressive stresses. (c) Schematic diagram of the ferroelectric materials without strain.
Fig. 11. (a) Illustration of piezoelectric effect-driven ZnO-based PEC water splitting. (b) LSV curves of ZnO without and with strain. (c) Energy band alignment in the PEC configuration. (d) Photocurrent density of the ZnO piezo-photoelectrochemical device under cyclic compressive strains of ?0.12%. (e) Photocurrent density generated under cyclic tensile strains, with a light intensity of 50 mW cm?2 and an applied potential of 1.5 V referenced to a saturated calomel electrode (SCE). Reproduced with permission from Ref. [40]. Copyright 2021, American Chemical society. (f) Illustration of of Pt/ZnO/Co-Pi photoanode under ultrasonic vibrations and illumination. (g) LSV curves. Reproduced with permission from Ref. [145]. Copyright 2020, Elsevier. (h) The amplitude butterfly loops of ZnO electrode. (i) PFM phase hysteresis loops of the ZnO electrode. (j) The amplitude butterfly loops of the MoS2 electrodes. (k) ZnO/MoS2 with and without ultrasonic vibrations. (l) LSV and (m) I-t curves of samples. (n) Mechanism of the PZ-PEC water splitting of ZnO/MoS2 sample. Reproduced with permission from Ref. [146]. Copyright 2024, Elsevier.
Fig. 12. (a) PFM images. (b) Amplitude butterfly loops. (c) Phase hysteresis loops of electrode. LSV curves of T-TB (d) and C-TB (e) electrodes with negative poling, no poling, and positive poling. (f) Schematic diagram of the T-TB@Ag electrode and mechanism of carrier separation and transfer. (g) LSV plots. Reproduced with permission from Ref. [152]. Copyright 2024, Elsevier. (h) Illustration of PEC performance under simulated solar illumination. (i) Mechanism for the improved PEC activity for the TiO2/BaTiO3/Ag2O poling. (j) LSV curve under AM 1.5G irradiation and in the dark of the different electrodes. Reproduced with permission from Ref. [154]. Copyright 2019, john Wiley and Sons. (k) Schematic diagram of the TiO2-SrTiO3 with negative poling, no poling, and positive poling conditions. (l) J-V curves of the TiO2-SrTiO3 under negative poling, no poling, and positive poling conditions. Reproduced with permission from Ref. [155]. Copyright 2017, john Wiley and Sons.
| External field | Materials | Stimulus | Condition | J (mA cm‒2) | Production rate | Faradic efficiency | Stability | Enhancement in external field | Ref. | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| piezoelectric field | Pt/ZnO/ Co-Pi | 90 kHz ultrasonic vibrations | AM 1.5G Na2SO4 (0.1 mol L‒1) | 0.8 @1.23 VRHE | H2: 110 μmol O2:55 μmol at 1.23 VRHE after 10 h | — | 12000 s | ×1.34 | [ | ||
| piezoelectric field | BaTiO3: Ce | built-in electric field | 100 W tungsten-halogen lamp (120 mW cm−2) NaOH (1 mmol L‒1) | 1.45 @1.2 VRHE | H2 amounts are 22.50 μmol h‒1cm‒2 at 1.23 VRHE | — | 2 h | — | [ | ||
| piezoelectric field | S-vacancies in CdS | 90 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.2 mol L‒1) | 3.09 @1.23 VRHE | — | — | 6000 s | ×1.96 | [ | ||
| piezoelectric field | Bi-Vacancies in BiVO4 | 90 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.5 mol L‒1) | 0.162 @1.23 VRHE | — | — | 300 s | ×1.8 | [ | ||
| piezoelectric field | BiFeO3/ PVDF | 90 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.2 mol L‒1) | 2.51 @1.23 VRHE | — | — | 5000 s | ×3.35 | [ | ||
| piezoelectric field | Bi2WO6/ BiOBr | 90 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.5 mol L‒1) | 0.088 @1.23 V RHE | — | — | 6000 s | ×1.3 | [ | ||
| piezoelectric field | WO3/a-CdS | 70 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.2 mol L‒1) | 2.13 @1.23 VRHE | — | — | 2 h | ×1.61 | [ | ||
| piezoelectric field | CdS/PANI | 70 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.2 mol L‒1) | 2.62 @1.23 VRHE | — | — | 5400 s | — | [ | ||
| piezoelectric field | n-CdTeCd/ p-ZnOSb,NR/ITO | stirred at 1500 rpm | AM 1.5G Na2SO4 (0.5 M) | ‒3.86 @0 VRHE | H2:58.5 O2: 28.6 μmolcm−2 h−1 at 0 VRHE | 84.7% | 24 h | — | [ | ||
| piezoelectric field | PVDF/Cu/ PVDF-NaNbO3 | 70 kHz ultrasonic vibration | Tungsten-halogen lamp (100 mW cm‒2) NaOH (0.5 mol L‒1) | 1.37 @1.23 VRHE | — | — | — | ×1.21 | [ | ||
| piezoelectric field | N doped 4H-SiC | 120 W ultrasonic vibration | AM 1.5G Na2SO4 (1 mol L‒1) | 6.50 @1.4 VAg/AgCl | — | — | — | ×1.50 | [ | ||
| piezoelectric field | CdS | 90 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.2 mol L‒1) | 2.12 @1.23VRHE | — | — | 6000 s | ×3.62 | [ | ||
| piezoelectric field | Microplate BiFeO3 | 40 kHz ultrasonic vibration | Xenon lamp (950 W m−2) with a UV light cutoff filter Na2SO4 (0.5 mol L‒1) | ‒0.83 @0.6VRHE | — | — | 80 mins | ×1.3 | [ | ||
| piezoelectric field | ZnO/MoS2 | 40 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.1 mol L‒1) | 0.68 @1.23 VRHE | — | — | 2 h | ×3.4 | [ | ||
| piezoelectric field | TiO2/BaTiO3/ CuInS2 | 40 kHz ultrasound actuation (100 W) | AM 1.5G Na2SO4 (0.5 mol L‒1) | 1.51 @1.23 VRHE | H2: 117 mmol h‒1 cm‒2 at 0.5 VRHE | 100% | 8 h | ×2 | [ | ||
| piezoelectric field | P-BiFeO3 | 90 kHz ultrasonic actuation | AM 1.5G Na2SO4 (0.2 mol L‒1) | 2.58 @1.23 VRHE | — | — | — | ×2.2 | [ | ||
| piezoelectric field | ZnO/ITO/PET | motor with wedged shaft drove the dynamic and static bending | AM 1.5G K2SO4 (0.5 mol L‒1) | 0.54 @1.5 VSCE | — | — | — | ×1.1 | [ | ||
| piezoelectric field | Ag-NaNbO3 | 40 kHz ultrasound actuation (100 W) | AM 1.5G NaOH (0.5 mol L‒1) | 9.65 @1VAg/AgCl | — | — | 3 h | ×2.3 | [ | ||
| piezoelectric field | Bi2WO6/CoB | 90 kHz ultrasonic actuation | AM 1.5G NaOH (0.5 mol L‒1) | 0.382 @1.23 VRHE | — | — | 4800 s | ×1.3 | [ | ||
| ferroelectric polarization | TiO2/SrTiO3 | poling voltage was -10 V for 10 mins | AM 1.5G NaOH (1 mol L‒1) | 1.43 @1.23 VRHE | — | — | — | ×1.1 | [ | ||
| ferroelectric polarization | TiO2/BaTiO3/ Ag | poling voltage was + 1 V for 500s | AM 1.5G NaOH (0.1 mol L‒1) | 7.3 @1.23 VRHE | H2:137.3 O2: 72.1 μmol at 1.23 VRHE in 3 h | 95.1% | 6000 s | — | [ | ||
| ferroelectric polarization | TiO2/BaTiO3/ Ag2O | poling voltage was + 2 V for 600s | AM 1.5G NaOH (1 mol L‒1) | 1.8 @0.8 VAg/Cl | — | — | 2 h | ×1.2 | [ | ||
| ferroelectric polarization | TiO2/BaTiO3 | poling voltage was +3 V for 300s | AM 1.5G NaOH (1 mol L‒1) | 1.4 @1.23 VRHE | — | — | — | ×1.1 | [ | ||
| ferroelectric polarization | NiFeOx/ BiVO4-OV | poling voltage was -150 V for 30 mins | AM 1.5G borate buffer(1 mol L‒1) | 6.3 @1.23 VRHE | — | — | 30 h | ×1.4 | [ |
Table 2 Comparative assessment of piezoelectric field enhanced PEC water splitting application studies.
| External field | Materials | Stimulus | Condition | J (mA cm‒2) | Production rate | Faradic efficiency | Stability | Enhancement in external field | Ref. | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| piezoelectric field | Pt/ZnO/ Co-Pi | 90 kHz ultrasonic vibrations | AM 1.5G Na2SO4 (0.1 mol L‒1) | 0.8 @1.23 VRHE | H2: 110 μmol O2:55 μmol at 1.23 VRHE after 10 h | — | 12000 s | ×1.34 | [ | ||
| piezoelectric field | BaTiO3: Ce | built-in electric field | 100 W tungsten-halogen lamp (120 mW cm−2) NaOH (1 mmol L‒1) | 1.45 @1.2 VRHE | H2 amounts are 22.50 μmol h‒1cm‒2 at 1.23 VRHE | — | 2 h | — | [ | ||
| piezoelectric field | S-vacancies in CdS | 90 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.2 mol L‒1) | 3.09 @1.23 VRHE | — | — | 6000 s | ×1.96 | [ | ||
| piezoelectric field | Bi-Vacancies in BiVO4 | 90 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.5 mol L‒1) | 0.162 @1.23 VRHE | — | — | 300 s | ×1.8 | [ | ||
| piezoelectric field | BiFeO3/ PVDF | 90 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.2 mol L‒1) | 2.51 @1.23 VRHE | — | — | 5000 s | ×3.35 | [ | ||
| piezoelectric field | Bi2WO6/ BiOBr | 90 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.5 mol L‒1) | 0.088 @1.23 V RHE | — | — | 6000 s | ×1.3 | [ | ||
| piezoelectric field | WO3/a-CdS | 70 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.2 mol L‒1) | 2.13 @1.23 VRHE | — | — | 2 h | ×1.61 | [ | ||
| piezoelectric field | CdS/PANI | 70 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.2 mol L‒1) | 2.62 @1.23 VRHE | — | — | 5400 s | — | [ | ||
| piezoelectric field | n-CdTeCd/ p-ZnOSb,NR/ITO | stirred at 1500 rpm | AM 1.5G Na2SO4 (0.5 M) | ‒3.86 @0 VRHE | H2:58.5 O2: 28.6 μmolcm−2 h−1 at 0 VRHE | 84.7% | 24 h | — | [ | ||
| piezoelectric field | PVDF/Cu/ PVDF-NaNbO3 | 70 kHz ultrasonic vibration | Tungsten-halogen lamp (100 mW cm‒2) NaOH (0.5 mol L‒1) | 1.37 @1.23 VRHE | — | — | — | ×1.21 | [ | ||
| piezoelectric field | N doped 4H-SiC | 120 W ultrasonic vibration | AM 1.5G Na2SO4 (1 mol L‒1) | 6.50 @1.4 VAg/AgCl | — | — | — | ×1.50 | [ | ||
| piezoelectric field | CdS | 90 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.2 mol L‒1) | 2.12 @1.23VRHE | — | — | 6000 s | ×3.62 | [ | ||
| piezoelectric field | Microplate BiFeO3 | 40 kHz ultrasonic vibration | Xenon lamp (950 W m−2) with a UV light cutoff filter Na2SO4 (0.5 mol L‒1) | ‒0.83 @0.6VRHE | — | — | 80 mins | ×1.3 | [ | ||
| piezoelectric field | ZnO/MoS2 | 40 kHz ultrasonic vibration | AM 1.5G Na2SO4 (0.1 mol L‒1) | 0.68 @1.23 VRHE | — | — | 2 h | ×3.4 | [ | ||
| piezoelectric field | TiO2/BaTiO3/ CuInS2 | 40 kHz ultrasound actuation (100 W) | AM 1.5G Na2SO4 (0.5 mol L‒1) | 1.51 @1.23 VRHE | H2: 117 mmol h‒1 cm‒2 at 0.5 VRHE | 100% | 8 h | ×2 | [ | ||
| piezoelectric field | P-BiFeO3 | 90 kHz ultrasonic actuation | AM 1.5G Na2SO4 (0.2 mol L‒1) | 2.58 @1.23 VRHE | — | — | — | ×2.2 | [ | ||
| piezoelectric field | ZnO/ITO/PET | motor with wedged shaft drove the dynamic and static bending | AM 1.5G K2SO4 (0.5 mol L‒1) | 0.54 @1.5 VSCE | — | — | — | ×1.1 | [ | ||
| piezoelectric field | Ag-NaNbO3 | 40 kHz ultrasound actuation (100 W) | AM 1.5G NaOH (0.5 mol L‒1) | 9.65 @1VAg/AgCl | — | — | 3 h | ×2.3 | [ | ||
| piezoelectric field | Bi2WO6/CoB | 90 kHz ultrasonic actuation | AM 1.5G NaOH (0.5 mol L‒1) | 0.382 @1.23 VRHE | — | — | 4800 s | ×1.3 | [ | ||
| ferroelectric polarization | TiO2/SrTiO3 | poling voltage was -10 V for 10 mins | AM 1.5G NaOH (1 mol L‒1) | 1.43 @1.23 VRHE | — | — | — | ×1.1 | [ | ||
| ferroelectric polarization | TiO2/BaTiO3/ Ag | poling voltage was + 1 V for 500s | AM 1.5G NaOH (0.1 mol L‒1) | 7.3 @1.23 VRHE | H2:137.3 O2: 72.1 μmol at 1.23 VRHE in 3 h | 95.1% | 6000 s | — | [ | ||
| ferroelectric polarization | TiO2/BaTiO3/ Ag2O | poling voltage was + 2 V for 600s | AM 1.5G NaOH (1 mol L‒1) | 1.8 @0.8 VAg/Cl | — | — | 2 h | ×1.2 | [ | ||
| ferroelectric polarization | TiO2/BaTiO3 | poling voltage was +3 V for 300s | AM 1.5G NaOH (1 mol L‒1) | 1.4 @1.23 VRHE | — | — | — | ×1.1 | [ | ||
| ferroelectric polarization | NiFeOx/ BiVO4-OV | poling voltage was -150 V for 30 mins | AM 1.5G borate buffer(1 mol L‒1) | 6.3 @1.23 VRHE | — | — | 30 h | ×1.4 | [ |
Fig. 13. Comparative assessment of piezoelectric field enhanced PEC water splitting application studies. Data collected from Refs. [41,145,146,148,152-155,157-162,164,166,167,169].
Fig. 14. (a) PEC water splitting with magnetic field modulation. (b) Schematic diagram of PEC enhanced by negative MR effect. (c) Schematic diagram of PEC enhanced by Lorentz force. (d) Schematic diagram of spin-polarization-enhanced PEC.
Fig. 15. (a) SEM and HR-TEM images of Co3O4/CoFe2O4@NF. (b) Depiction of the alteration in magnetic moment for ferromagnetic substances. (c) Hysteresis curves. (d) Magneto-transport properties of CoFe2O4 at room temperature. (e) EIS plots. Reproduced with permission from Ref. [170]. Copyright 2023, john Wiley and Sons. (f) Schematic of magnet placement for PEC measurements, magnet size 10 cm × 5 cm × 2 cm, magnetic strength ~140.0 mT. (g) Image of the electrode parallel with a magnet for PEC measurements. (h) LSV values of photoelectrodes with and without a 140.0 mT parallel magnet under AM 1.5G irradiation and dark conditions. (i) Under AM 1.5G irradiation as well as in the presence of different pieces of magnets (~40.0 mT/piece), the LSV curves of BiVO4 film, α-Fe2O3 film, and p-Si (111) wafer sheet photoelectrodes. (j) Diagram of the placed position of magnet relative to the photoelectrode, and the direction of magnetic field relative to the moving charge carrier of photoelectrode. (k) Schematic diagram of magnetic field driven PEC system. Reproduced with permission from Ref. [172]. Copyright 2021, American Chemical Society.
Fig. 16. (a) Magnetic-field enhanced PEC experimental configuration. (b) I-t curves of samples under 1.57 VRHE with light and magnet. (c) Hysteresis curves of different samples. (d) magneto-transport properties of after phosphide. (e) Schematic diagram of spin-polarization-enhanced ferromagnetic ZnFe2O4 photogenerated carrier separation transfer mechanism. The three-dimensional and planar distribution maps of spin polarization for ZnFe2O4 (f) and ZnFe2O4 (g) after phosphide. Reproduced with permission from Ref. [173]. Copyright 2021, American Chemical Society. (h) LSV curves. (i) IPCE curves. (j) Magnetisation state diagrams of Fe2TiO5 thin films in an unmagnetised state and perpendicular to a plane magnetic field. (k) The ηtrans and ηsep values of BiVO4/Fe2TiO5 with or without magnetic field. Reproduced with permission from Ref. [174]. Copyright 2024, American Chemical Society.
| External field | Material | Field condition | Condition | J (mA cm‒2) | Production rate | Faradic efficiency | Stability | Enhancement in external field | Ref. | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| magnetic | BiVO4 and α-Fe2O3 (photoanodes) Cu2O/CuO and p-Si (111) (photocathodes) | 140 mT | AM 1.5G 0.1 mol L‒1 Na2SO4 | 1.43 and 1.4@1.23 VRHE ‒3.5 and ‒0.165 @0.1 VRHE, respectively | — | — | 60 min | 1.146, 1.15.69, 1.17 and 1.1393 times | [ | ||
| magnetic | ZnFe2O4+P | 100 mT | AM 1.5G 0.1 mol L‒1 KOH | 1.05 @1.57 VRHE | O2: 17.7 μmol at 1.57 VRHE after 2 h | 92% | — | 1.5 times | [ | ||
| magnetic | FeCoSe2 | 4 mT | AM 1.5G 1 mol L‒1 KOH | 3.98 @1.23 VRHE | — | — | 7000 s | 1.057 times | [ | ||
| magnetic | Mo2CTx/MoSSe/SiNW | 400 mT | AM 1.5G 0.5 mol L‒1 H2SO4 | ‒0.561 @0 VRHE | H2: 54.4 mmol cm‒2 h‒1 at 0 VRHE | — | 2.5 h | 1.52 times | [ | ||
| magnetic | BiVO4/Fe2TiO5 | 200 mT | AM 1.5G 0.2 mol L‒1 Na2SO4 | 3.33 @1.23 VRHE | O2: ~17 μmol cm‒2 in 50 min at 1.23 VRHE | ~90% | 6 h | 1.08 times | [ |
Table 3 Comparative assessment of magnetic field enhanced PEC water splitting application studies.
| External field | Material | Field condition | Condition | J (mA cm‒2) | Production rate | Faradic efficiency | Stability | Enhancement in external field | Ref. | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| magnetic | BiVO4 and α-Fe2O3 (photoanodes) Cu2O/CuO and p-Si (111) (photocathodes) | 140 mT | AM 1.5G 0.1 mol L‒1 Na2SO4 | 1.43 and 1.4@1.23 VRHE ‒3.5 and ‒0.165 @0.1 VRHE, respectively | — | — | 60 min | 1.146, 1.15.69, 1.17 and 1.1393 times | [ | ||
| magnetic | ZnFe2O4+P | 100 mT | AM 1.5G 0.1 mol L‒1 KOH | 1.05 @1.57 VRHE | O2: 17.7 μmol at 1.57 VRHE after 2 h | 92% | — | 1.5 times | [ | ||
| magnetic | FeCoSe2 | 4 mT | AM 1.5G 1 mol L‒1 KOH | 3.98 @1.23 VRHE | — | — | 7000 s | 1.057 times | [ | ||
| magnetic | Mo2CTx/MoSSe/SiNW | 400 mT | AM 1.5G 0.5 mol L‒1 H2SO4 | ‒0.561 @0 VRHE | H2: 54.4 mmol cm‒2 h‒1 at 0 VRHE | — | 2.5 h | 1.52 times | [ | ||
| magnetic | BiVO4/Fe2TiO5 | 200 mT | AM 1.5G 0.2 mol L‒1 Na2SO4 | 3.33 @1.23 VRHE | O2: ~17 μmol cm‒2 in 50 min at 1.23 VRHE | ~90% | 6 h | 1.08 times | [ |
Fig. 19. (a) SEM image of NaNbO3; Coupling of magnetic-thermal field of NaNbO3 simulated by COMSOL. (b) Internal temperature distribution. (c) Cross-sectional thermal mapping. (d) Magnetic flux density distribution. (e) Charge density characteristics (20 °C/50 °C) with octahedral structures. (f) LSV curves of NaNbO3under different conditions. (g) Schematic diagram of the coupling of pyroelectric and thermomagnetic effects in the PEC process. Reproduced with permission from Ref. [42]. Copyright 2023, Elsevier. (h) TEM image of Ba0.7Sr0.3TiO3 nano-blocks. (i) The schematic crystal structures of front and side of Ba0.7Sr0.3TiO3. (j) The bulk charge separation efficiency. (k) The current density-voltage curves. (l) Schematic diagram of Ba0.7Sr0.3TiO3 water decomposition enhanced by the synergistic effect of mechanical stress and temperature field. Reproduced with permission from Ref. [43]. Copyright 2023, Elsevier.
| External field | Material | Field condition | Condition | J (mA cm‒2) | Production rate | Faradic efficiency | Stability (s) | Enhancement in external field | Ref. | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Magnetic + pyroelectric | NaNbO3 | 100 mT+ 20‒50 °C | AM 1.5G 1 mol L‒1 Na2SO4 | 0.45@1.23 VRHE | — | — | 420 | 3, 1.23 and 2.72 times higher than no field, pyroelectric and magnetic fields alone, | [ | ||
| piezoelectric + pyroelectric | Ba0.7Sr0.3 TiO3 | 50‒90kHz+ 20-50 °C | AM 1.5G 0.2 mol L‒1 Na2SO4 | 1.01 @1.23 VRHE | — | — | 250 | 1.42, 1.22 and 1.31 times higher than no field, piezoelectric and pyroelectric fields alone | [ |
Table 4 Comparative assessment of multiple field enhanced PEC water splitting application studies.
| External field | Material | Field condition | Condition | J (mA cm‒2) | Production rate | Faradic efficiency | Stability (s) | Enhancement in external field | Ref. | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Magnetic + pyroelectric | NaNbO3 | 100 mT+ 20‒50 °C | AM 1.5G 1 mol L‒1 Na2SO4 | 0.45@1.23 VRHE | — | — | 420 | 3, 1.23 and 2.72 times higher than no field, pyroelectric and magnetic fields alone, | [ | ||
| piezoelectric + pyroelectric | Ba0.7Sr0.3 TiO3 | 50‒90kHz+ 20-50 °C | AM 1.5G 0.2 mol L‒1 Na2SO4 | 1.01 @1.23 VRHE | — | — | 250 | 1.42, 1.22 and 1.31 times higher than no field, piezoelectric and pyroelectric fields alone | [ |
| Strategy | External condition | Working principle | Advantage | Limitation |
|---|---|---|---|---|
| Thermal field- photothermal effect | light irradiation | localized heating reduces recombination | NIR utilization enhanced carrier kinetics | material instability >60°C thermal management complexity |
| Thermal field- pyroelectric effect | dynamic temperature fluctuations | thermal gradients → transient polarization | waste heat recovery boosted built-in field | ineffective at steady-state limited material choices |
| Piezoelectric field- strain piezoelectricity | mechanical stress (ultrasound/vibration) | crystal deformation → polarized charges | self-powered operation flexible integration | fatigue failure risk requires sustained stimulation |
| Piezoelectric field- ferroelectric polarization | DC poling treatment | remnant polarization → permanent built-in field | recombination suppression persistent effect | electrolytic depolarization |
| Magnetic field | static/oscillating field (>100 mT optimal) | lorentz force deflection & spin polarization | extended carrier lifetime enhanced OER kinetics | high energy consumption non-magnetic material incompatibility |
| Coupled fields | multi-field simultaneity | synergistic carrier/reaction dynamics | efficiency breakthrough multi-bottleneck addressing | interfacial delamination risk no standardized design rules |
Table 5 Comparison of the principles and advantages and disadvantages of various physical field strategies.
| Strategy | External condition | Working principle | Advantage | Limitation |
|---|---|---|---|---|
| Thermal field- photothermal effect | light irradiation | localized heating reduces recombination | NIR utilization enhanced carrier kinetics | material instability >60°C thermal management complexity |
| Thermal field- pyroelectric effect | dynamic temperature fluctuations | thermal gradients → transient polarization | waste heat recovery boosted built-in field | ineffective at steady-state limited material choices |
| Piezoelectric field- strain piezoelectricity | mechanical stress (ultrasound/vibration) | crystal deformation → polarized charges | self-powered operation flexible integration | fatigue failure risk requires sustained stimulation |
| Piezoelectric field- ferroelectric polarization | DC poling treatment | remnant polarization → permanent built-in field | recombination suppression persistent effect | electrolytic depolarization |
| Magnetic field | static/oscillating field (>100 mT optimal) | lorentz force deflection & spin polarization | extended carrier lifetime enhanced OER kinetics | high energy consumption non-magnetic material incompatibility |
| Coupled fields | multi-field simultaneity | synergistic carrier/reaction dynamics | efficiency breakthrough multi-bottleneck addressing | interfacial delamination risk no standardized design rules |
| Technology | Estimated LCOH (USD kg‒1 H2) | Key assumptions & Cost drivers | Impact of field energy input |
|---|---|---|---|
| Steam methane reforming (SMR) | 1.2‒2.5 | capital cost, natural gas feedstock price, no cost for carbon emissions. | — |
| PV-electrolyzer (PV-EC) | 4.0‒6.0 (future projection) | capital cost of PV modules & electrolyzer (PEM/AEM), balance of plant. assumes STH > 20%. | — |
| Standard PEC (no external field) | 10.0+ (highly uncertain) | high capital cost: expensive photoelectrode materials, reactor fabrication. high operating cost: short lifetime leads to frequent replacement. | — |
| Field-assisted PEC (e.g., Ultrasound) | >> standard PEC cost | capital Cost: field generator (e.g., ultrasonic, RF heater), power supply, cooling system. operating cost: electrical energy input for the field is a major and continuous cost driver. | the input cost of field energy accounts for a high proportion. assuming that the additional electrical energy input accounts for 30% of the total hydrogen production energy, LCOH will significantly increase. the direct correlation between field energy input cost and hydrogen production is one of its main economic disadvantages. |
| Immersed PV-EC (High-efficiency) | ~1.8‒4.0 (projected) | high cost of III-V multi-junction cells offset by very high STH efficiency (> 20%) and use of earth-abundant catalysts. | — |
Table 6 Estimated levelized cost of hydrogen (LCOH) for various hydrogen production technologies.
| Technology | Estimated LCOH (USD kg‒1 H2) | Key assumptions & Cost drivers | Impact of field energy input |
|---|---|---|---|
| Steam methane reforming (SMR) | 1.2‒2.5 | capital cost, natural gas feedstock price, no cost for carbon emissions. | — |
| PV-electrolyzer (PV-EC) | 4.0‒6.0 (future projection) | capital cost of PV modules & electrolyzer (PEM/AEM), balance of plant. assumes STH > 20%. | — |
| Standard PEC (no external field) | 10.0+ (highly uncertain) | high capital cost: expensive photoelectrode materials, reactor fabrication. high operating cost: short lifetime leads to frequent replacement. | — |
| Field-assisted PEC (e.g., Ultrasound) | >> standard PEC cost | capital Cost: field generator (e.g., ultrasonic, RF heater), power supply, cooling system. operating cost: electrical energy input for the field is a major and continuous cost driver. | the input cost of field energy accounts for a high proportion. assuming that the additional electrical energy input accounts for 30% of the total hydrogen production energy, LCOH will significantly increase. the direct correlation between field energy input cost and hydrogen production is one of its main economic disadvantages. |
| Immersed PV-EC (High-efficiency) | ~1.8‒4.0 (projected) | high cost of III-V multi-junction cells offset by very high STH efficiency (> 20%) and use of earth-abundant catalysts. | — |
|
| [1] | 李晓宁, 郝崇琰, 杜雨蒙, 卢昀, 范亚蒙, 王明月, 王娜娜, 孟瑞晋, 王晓临, 徐梽川, 程振翔. 利用磁场加速析氧反应[J]. 催化学报, 2023, 55(12): 191-199. |
| [2] | 魏超, 徐梽川. 磁场效应对理解水分解反应物的可能意义[J]. 催化学报, 2022, 43(1): 148-157. |
| [3] | 方元行, 马一文, 王心晨. 电化学制备异质二氧化钛结构增强其在光电分解水中转化效率[J]. 催化学报, 2018, 39(3): 438-445. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||