催化学报 ›› 2026, Vol. 81: 37-68.DOI: 10.1016/S1872-2067(25)64880-7
钟海红a, 徐芊牵b, 杨玮婷a, ALONSO-VANTE Nicolasc, 冯拥军b(
)
收稿日期:2025-07-28
接受日期:2025-09-05
出版日期:2026-02-18
发布日期:2025-12-26
通讯作者:
*电子信箱: yjfeng@mail.buct.edu.cn (冯拥军).
基金资助:
Haihong Zhonga, Qianqian Xub, Weiting Yanga, Nicolas Alonso-Vantec, Yongjun Fengb(
)
Received:2025-07-28
Accepted:2025-09-05
Online:2026-02-18
Published:2025-12-26
Contact:
*E-mail: yjfeng@mail.buct.edu.cn (Y. Feng).
About author:Dr. Yongjun Feng, born in January 1976, is a full professor and Ph.D. supervisor in Beijing University of Chemical Technology. In 2022, he was recognized by the National Major Talent Project and the Shandong Mount Taishan Industrial Leading Talent Project. He currently holds the position of Director at the Talent Introduction Office of Beijing University of Chemical Technology, and serves in various esteemed roles such as a member of the International Symposium on Intercalation Compounds Committee (ISIC), a Senior Member of the Chinese Chemical Society, Vice Chairman of the Expert Committee of the China Renewable Resources Industry Technology Innovation Strategy Alliance, and a member of the Anhui Province New Materials Industry Development Strategy Advisory Committee. In January 2007, he earned his Ph.D. in Chemistry from Blaise Pascal University in France, and subsequently pursued postdoctoral research at the University of Poitiers in France. In 2011, he joined the State Key Laboratory of Chemical Resources Engineering (CRE), focusing on the fundamental, applied, and engineering research of intercalated structure functional materials, porous carriers and adsorption materials, and non-noble metal electrocatalytic materials. He has led more than 30 projects entrusted by international, national and enterprise entities, and built 8 sets of industrial plants with a scale of more than 100 tons per year, including 2 under his direct leadership. He has published more than 120 papers in leading international journals as the first author or corresponding author, filed more than 60 national invention patents, of which 46 were granted; and served on the editorial boards of journals including “Applied Clay Science” and “Fine Chemicals.” Multiple patented technologies have been successfully commercialized.
Supported by:摘要:
面对日益严峻的能源挑战, 可持续绿色能源转换技术的开发和应用已受到广泛关注. 作为以电能驱动能源转化的关键技术, 电催化技术被视为解决能源危机的极具前景的方案, 广泛应用于能源转换与存储、环境治理、绿色化学品合成等领域. 然而, 氧电极反应(包括氧还原反应(ORR)与析氧反应(OER))受限于缓慢的电子转移动力学和复杂的多步吸附-解吸过程, 反应过电位较高, 这严重制约了燃料电池、电解槽等设备的能量转换效率. 在实际体系中, 电化学反应的动力学能垒主要表现为活化过电位、欧姆过电位、浓度过电位等能量损失. 其中, 活化过电位由反应的吉布斯自由能垒决定, 其本质取决于催化剂的电子结构. 铁族过渡金属硫属化合物(过渡金属TM = Fe、Co、Ni; 硫属元素Ch = S、Se)因具有天然丰度高、成本低、环境友好且可通过组成调控实现对其电子结构精准修饰等特性, 已成为极具发展潜力的ORR与OER电催化剂. 在此背景下, 众多研究者已开展大量研究, 致力于通过合理设计该类化合物, 优化其电子转移动力学并提升材料稳定性, 以推动其在可持续能源系统中的实际应用.
本文系统总结了近年来铁族过渡金属硫属化合物在多组分调控策略方面的研究进展. 首先简要介绍了ORR和OER的反应机理及电催化剂设计原则. 随后, 通过典型案例, 重点阐述了阴离子取代、阳离子掺杂及零价元素引入等手段对材料电子结构、配位环境和催化性能的调控作用, 指出通过调节d带中心、自旋态等电子结构特性以优化中间体吸附强度, 是提升催化动力学的关键机制. 随后, 针对铁族过渡金属硫属化合物在OER过程中发生的动态表面重构(如阳离子氧化、阴离子浸出), 总结对比了几种先进原位表征技术在捕捉电化学过程中结构演变方面的优势与局限. 最后, 分析了当前铁族过渡金属硫属化合物在ORR/OER催化研究中面临的主要挑战, 并对未来发展方向提出展望, 包括: (1)建立基于局部电子结构的构效关系; (2)发展精准调控活性位点配位环境的合成方法; (3)实现对表面重构路径的有效控制.
本综述旨在为理解铁族过渡金属硫属化合物电催化材料的组成设计、性能优化与实际应用提供系统参考, 并为推动该领域进一步发展提供思路.
钟海红, 徐芊牵, 杨玮婷, ALONSO-VANTE Nicolas, 冯拥军. 铁族过渡金属硫属化合物组成调控以增强氧电极电催化性能[J]. 催化学报, 2026, 81: 37-68.
Haihong Zhong, Qianqian Xu, Weiting Yang, Nicolas Alonso-Vante, Yongjun Feng. Composition regulation of iron-group transition metal chalcogenides for the oxygen electrocatalysis: Electronic structure and surface reconstruction[J]. Chinese Journal of Catalysis, 2026, 81: 37-68.
Fig. 1. Schematic illustration of the cascading influence from compositional regulation to electronic structure, surface property, and oxygen electrocatalysis.
Fig. 2. (a) Schematic diagram of four-electron and two-electron ORR pathways. (b,c) volcano plots of various metals for ORR activity. Reprinted with permission from Ref. [30]. Copyright 2004, American Chemical Society. (d) The linear relationship between ΔGOOH* and ΔGOH*. Reprinted with permission from Ref. [31]. Copyright 2022, Elsevier. (e) DOS diagram of spinel oxide and the correlation between OER pathways (AEM versus LOM) and the band centers. Reprinted with permission from Ref. [32]. Copyright 2023, John Wiley and Sons.
Fig. 3. (a) The diagram of d-orbital splitting of Co ions with different oxidation-valence states. (b) Electronic coupling of Co3+-O-Co3+, Co2+-O-Co2+, and Co3+-O-Co2+ three configurations. (c) Charge density difference diagrams of pure Co-S model (left) and Co-S, Co-N4-C coexistence model (right), respectively. (d) PDOS of Co 3d and corresponding d-band centers for the Co@NC, Co-S and Co-S@NC. Reprinted with permission from Ref. [80]. Copyright 2024, John Wiley and Sons. (e) Schematic diagram of the spin states of Co ions in CoN3S1, CoN2S2, and CoN1S3 configurations. (f) DOS of the Co sites. (g) the diagram d-orbital splitting of Co ions based on crystal field theory. Reprinted with permission from Ref. [81]. Copyright 2025, American Chemical Society.
Fig. 4. (a) Difference charge density of Co/NC, Co-Co/NC, Co-Se/NC, and Co-Se/Co/NC four models. (b) DOS of Co. (c) Dissolution potential of Co active sites in Co-Se/NC and Co-Se/Co/NC models. (d) Proposed ORR pathway of the Co-Se/Co/NC. (d) Gibbs free energy at Co, Se (Co-Se) and Co (Co-Se) three sites of the Co-Se/Co/NC for ORR at U = 1.23 V. (e) Schematic diagram of Gibbs free energy on the four electrocatalysts. (f) Crystal orbital Hamilton population (COHP) of Co/NC, Co-Se/NC, and Co-Se/Co/NC models. (g) PDOS of O 2p and Co 3d orbits in the Co-Se/Co/NC model. Reprinted with permission from Ref. [87]. Copyright 2024, John Wiley and Sons.
| Catalyst/counterpart | E1/2 (V vs. RHE) | Eonset (V vs. RHE) | Stability | Ref. |
|---|---|---|---|---|
| Co-S@NC | 0.85 | 0.92 | 221 cycles at 1000 mA g-1 in a Li-O2 battery | [ |
| CoN1S3 | 0.88 | 0.98 | discharge for 20 h in a ZAB | [ |
| CoN3S1 | 0.82 | 0.94 | — | |
| CoN2S2 | 0.87 | 0.97 | — | |
| CoO0.87S0.13/GN | 0.83 | 0.94@0.1 mA cm-2 | after 300 cycles (~300 h), the voltage gap remains 0.77 V in a ZAB | [ |
| CoOxS1.097/G | 0.69 | 0.86@0.1 mA cm-2 | — | |
| Ni0.5Mo0.5OSe | 0.88 | 0.96 | after operating for 300 h, the discharge voltage holds 1.25 V in a ZAB | [ |
| Ni0.75Mo0.25OSe | 0.82 | 0.91 | — | |
| Ni0.25Mo0.75OSe | 0.77 | 0.88 | — | |
| Co-Se/Co/NC | 0.88 | 0.99 | discharging at 10 mA cm-2 for 80 h and at 20 mA cm-2 for 40 h in a ZAB | [ |
| Co-Se/NC | 0.85 | 0.94 | — | |
| Co-Co/NC | 0.81 | 0.90 | — | |
| NixCo9‒xS8@NSC | 0.93 | 0.99 | charge-discharge cycling at 10 mA cm-2 for 160 h (≈960 cycles) in a ZAB | [ |
| NiS@NSC | 0.78 | 0.86 | — | |
| CoS@NSC | 0.81 | 0.87 | — | |
| CoNiFe-S | 0.78 | 0.88 | after 40 h/120 cycles, the voltage gap remains 0.74 V in a ZAB | [ |
Table 1 Summary of ORR performance for reported IGTMC catalysts and the corresponding counterparts in 0.1 mol L-1 KOH solution.
| Catalyst/counterpart | E1/2 (V vs. RHE) | Eonset (V vs. RHE) | Stability | Ref. |
|---|---|---|---|---|
| Co-S@NC | 0.85 | 0.92 | 221 cycles at 1000 mA g-1 in a Li-O2 battery | [ |
| CoN1S3 | 0.88 | 0.98 | discharge for 20 h in a ZAB | [ |
| CoN3S1 | 0.82 | 0.94 | — | |
| CoN2S2 | 0.87 | 0.97 | — | |
| CoO0.87S0.13/GN | 0.83 | 0.94@0.1 mA cm-2 | after 300 cycles (~300 h), the voltage gap remains 0.77 V in a ZAB | [ |
| CoOxS1.097/G | 0.69 | 0.86@0.1 mA cm-2 | — | |
| Ni0.5Mo0.5OSe | 0.88 | 0.96 | after operating for 300 h, the discharge voltage holds 1.25 V in a ZAB | [ |
| Ni0.75Mo0.25OSe | 0.82 | 0.91 | — | |
| Ni0.25Mo0.75OSe | 0.77 | 0.88 | — | |
| Co-Se/Co/NC | 0.88 | 0.99 | discharging at 10 mA cm-2 for 80 h and at 20 mA cm-2 for 40 h in a ZAB | [ |
| Co-Se/NC | 0.85 | 0.94 | — | |
| Co-Co/NC | 0.81 | 0.90 | — | |
| NixCo9‒xS8@NSC | 0.93 | 0.99 | charge-discharge cycling at 10 mA cm-2 for 160 h (≈960 cycles) in a ZAB | [ |
| NiS@NSC | 0.78 | 0.86 | — | |
| CoS@NSC | 0.81 | 0.87 | — | |
| CoNiFe-S | 0.78 | 0.88 | after 40 h/120 cycles, the voltage gap remains 0.74 V in a ZAB | [ |
Fig. 5. (a) DOS diagrams of NiO, NiSe, Ni3Se2 and Ni; normalized CV curves by the BET surface area of the electrocatalyst in 0.1 mol L-1 KOH electrolytes; corresponding Tafel slope plots; Reprinted with permission from Ref. [118]. Copyright 2017, American Chemical Society. (b) Average overpotentials at 10 mA cm-2 of the OER for all the NiSSe electrocatalysts; average half-wave potentials of the ORR; calculated pseudo-ΔE (pΔE) values, presenting an improvement in BOE performance along with increasing Se content. Reprinted with permission from Ref. [119]. copyright 2023, American Chemical Society.
Fig. 6. (a) The adsorption models of *OO, *OOH, *O and *OH intermediates on the Ni(S0.51Se0.49)2@NC; Gibbs free energy diagrams for the ORR and OER on Ni-NiS2, Ni-NiSe2 and Ni-Ni(S0.51Se0.49)2 at different potentials, respectively; ORR and OER pathways of Ni-Ni(S0.51Se0.49)2@NC. Reprinted with permission from Ref. [123]. Copyright 2022, John Wiley and Sons. (b) Schematic structure of CoS and Co(S, Se) electrocatalysts; electron density distribution around Co atoms exposed on (100) surface of CoS and Co(S, Se); Gibbs free energy diagrams of CoS and Co(S, Se) for the OER; the corresponding TDOS. Reprinted with permission from Ref. [124]. Copyright 2021, Elsevier.
Fig. 7. DOS of Co 3d and S 3p orbitals in Co3S4 (a) and HS Co3S4 (b). (c) DOS of eg and t2g orbitals in the Co3S4 and HS Co3S4. (d) The illustration of the band structure of Co 3d orbitals in different configurations; the molecular orbital structure and electron filling of LS Co3S4 and HS Co3S4, respectively. Reprinted with permission from Ref. [134]. Copyright 2025, American Chemical Society.
Fig. 8. (a) Schematic representation of charge density transfer at Ni sites in c-NiSe2, c/a-NiSe2, and CoxNi1-xSe2 based on Bader charge analysis; calculated DOS; Gibbs free energy diagrams of c/a-NiOOH and c/a-Co-NiOOH for the OER; schematic diagrams of rigid band structure for c/a-NiSe2, and CoxNi1?xSe2; Reprinted with permission from Ref. [160]. Copyright 2025, Elsevier. (b) XPS spectra of Se 3d on Fe@CoS/Se2-NRs, Co-Se2, and Fe-Se2; Gibbs free energy diagrams for the OER process at Co sites in the Fe@CoS/Se2-NRs, Co-Se2, and Fe-Se2 (inset: the molecular structure with O adsorption on Co site of Co-Se2); the PDOS of Fe@CoS/Se2-NRs, Co-Se2, and Fe-Se2, respectively. Reprinted with permission from Ref. [161]. Copyright 2022, Elsevier.
Fig. 9. (a) Schematic diagram of the OER process at the Co site of (Fe0.25Co0.75)OOH model in alkaline medium. (b) Difference charge density of the (Fe0.25Co0.75)OOH. (c) DOS of the (Fe0.25Co0.75)OOH. (d) OER polarization curves of CoS2, FeS2, and (FexCo1?x)S2 electrocatalysts in the 1.0 mol L?1 KOH; (e) Comparison of overpotentials at 10 mA cm?2. (f) The corresponding Tafel slope curves. Reprinted with permission from Ref. [164]. Copyright 2014, Royal Society of Chemistry. (g) COHP and PDOS profiles of NiSe2, and FexNi1?xSe2 electrocatalysts. (h) The energy barrier for RDS. Insert: structure models of NiSe2, and FexNi1?xSe2 electrocatalysts. Reprinted with permission from Ref. [170]. Copyright 2023, Elsevier.
| Catalysts/ counterpart | η (mV) | Tafel slop (mV dec‒1) | Stability (V vs. RHE) | Ref. |
|---|---|---|---|---|
| Co-Se1 (mCo:mSe = 1:0.02) | 280@100 mA cm‒2 | 40 | chronoamperometry at 1.57 V for 12 h; 2000 cycles | [ |
| Co-Se4 (mCo:mSe = 1:0.2) | 410@100 mA cm‒2 | 71 | — | |
| Ni3Se2 | — | 46 | — | [ |
| NiSe | — | 72 | — | |
| NiO | — | 136 | — | |
| FeNiOOH(Se)/IF | 222@10 mA cm‒2 279@100 mA cm‒2 | — | chronopotentiometry at 100 mA cm‒2 for 100 h; at 100 mA cm‒2 for 50 h in an electrolyzer | [ |
| FeOOH(Se)/IF | 287@10 mA cm‒2 364@100 mA cm‒2 | 54 | chronoamperometry at 10 mA cm‒2 for 15 h | |
| two-tiered NiSe | 290@10 mA cm‒2 | 77 | — | [ |
| two-tiered Ni(OH)2 | 350@10 mA cm‒2 | 86 | — | |
| Co(S, Se)@GNF | 347@10 mA cm‒2 | 69 | after 10000 cycles, η10 value increases 10 mV | [ |
| CoS@GNF | 400@10 mA cm‒2 | 83 | — | |
| HS Co3S4 | 222@10 mA cm‒2 277@100 mA cm‒2 | 35 | chronopotentiometry at 100 mA cm‒2 for 24 h; at 100 mA cm‒2 for 24 h in an electrolyzer | [ |
| Co3S4 | 287@10 mA cm‒2 431@100 mA cm‒2 | 139 | — | |
| CoS2 HNSs | 290@10 mA cm‒2 | 57 | chronoamperometry at 1.9 V for 10 h in an electrolyzer | [ |
| Co9S8 HNSs | 342@10 mA cm-2 | 104 | — | |
| Co3S4 HNSs | 307@10 mA cm‒2 | 108 | — | |
| (Ni, Co)0.85Se/CFC | 255@10 mA cm‒2 | 79 | chronopotentiometry at 10 mA cm‒2 for 24 h | [ |
| Co0.85Se/CFC | 324@10 mA cm‒2 | 85 | — | |
| CoxNi1‒xSe2@Co(OH)2/NF | 231@10 mA cm‒2 307@100 mA cm‒2 | 54 | chronoamperometry at 0.8 V vs. Hg/HgO for 50 h, current retention of 98.2% | [ |
| NiSe2/NF | 254@10 mA cm‒2 335@100 mA cm‒2 | 72 | chronoamperometry at 0.8 V vs. Hg/HgO for 50 h, current retention of 92.7% | |
| Fe@Co/Se2-NRs | 200@10 mA cm‒2 | 35 | continuous operation at 100 mA cm‒2 for 72 h in an electrolyzer | [ |
| Fe-Se2 | 360@10 mA cm‒2 | 105 | — | |
| Co-Se2 | 250@10 mA cm‒2 | 67 | — | |
| NiCo2S4 | 247@10 mA cm‒2 | 62 | chronoamperometry at 1.6 V for 24 h | [ |
| NiCo3S4 | 264@10 mA cm‒2 | 68 | — | |
| NiCoS4 | 285@10 mA cm‒2 | 79 | — | |
| (Fe0.25Co0.75)S2 | 274@10 mA cm‒2 | 34 | chronopotentiometry at 20 mA cm‒2 for 60 h | [ |
| (Fe0.20Co0.80)S2 | 285@10 mA cm‒2 | 50 | — | |
| (Fe0.33Co0.67)S2 | 292@10 mA cm‒2 | 41 | — | |
| Fe0.4Co0.6Se2 | 270@10 mA cm‒2 | 36 | chronopotentiometry at 10 mA cm‒2 for 24 h | [ |
| Fe0.2Co0.8Se2 | 287@10 mA cm‒2 | 45 | — | |
| Fe0.6Co0.4Se2 | 313@10 mA cm‒2 | 52 | — | |
| FeCoNiS | 164@10 mA cm‒2 | 23 | chronopotentiometry at 10 mA cm‒2 for 800 h and 100 mA cm‒2 for 2200 h | [ |
| FeCoS | 219@10 mA cm‒2 | 28 | — | |
| CoNiS | 216@10 mA cm‒2 | 34 | — | |
| FeNiS | 251@10 mA cm‒2 | 40 | — |
Table 2 Summary of the overpotential, Tafel slope, turn over frequency and stability for reported IGTMC catalysts and the corresponding counterparts in 1.0 mol L?1 KOH or NaOH solution.
| Catalysts/ counterpart | η (mV) | Tafel slop (mV dec‒1) | Stability (V vs. RHE) | Ref. |
|---|---|---|---|---|
| Co-Se1 (mCo:mSe = 1:0.02) | 280@100 mA cm‒2 | 40 | chronoamperometry at 1.57 V for 12 h; 2000 cycles | [ |
| Co-Se4 (mCo:mSe = 1:0.2) | 410@100 mA cm‒2 | 71 | — | |
| Ni3Se2 | — | 46 | — | [ |
| NiSe | — | 72 | — | |
| NiO | — | 136 | — | |
| FeNiOOH(Se)/IF | 222@10 mA cm‒2 279@100 mA cm‒2 | — | chronopotentiometry at 100 mA cm‒2 for 100 h; at 100 mA cm‒2 for 50 h in an electrolyzer | [ |
| FeOOH(Se)/IF | 287@10 mA cm‒2 364@100 mA cm‒2 | 54 | chronoamperometry at 10 mA cm‒2 for 15 h | |
| two-tiered NiSe | 290@10 mA cm‒2 | 77 | — | [ |
| two-tiered Ni(OH)2 | 350@10 mA cm‒2 | 86 | — | |
| Co(S, Se)@GNF | 347@10 mA cm‒2 | 69 | after 10000 cycles, η10 value increases 10 mV | [ |
| CoS@GNF | 400@10 mA cm‒2 | 83 | — | |
| HS Co3S4 | 222@10 mA cm‒2 277@100 mA cm‒2 | 35 | chronopotentiometry at 100 mA cm‒2 for 24 h; at 100 mA cm‒2 for 24 h in an electrolyzer | [ |
| Co3S4 | 287@10 mA cm‒2 431@100 mA cm‒2 | 139 | — | |
| CoS2 HNSs | 290@10 mA cm‒2 | 57 | chronoamperometry at 1.9 V for 10 h in an electrolyzer | [ |
| Co9S8 HNSs | 342@10 mA cm-2 | 104 | — | |
| Co3S4 HNSs | 307@10 mA cm‒2 | 108 | — | |
| (Ni, Co)0.85Se/CFC | 255@10 mA cm‒2 | 79 | chronopotentiometry at 10 mA cm‒2 for 24 h | [ |
| Co0.85Se/CFC | 324@10 mA cm‒2 | 85 | — | |
| CoxNi1‒xSe2@Co(OH)2/NF | 231@10 mA cm‒2 307@100 mA cm‒2 | 54 | chronoamperometry at 0.8 V vs. Hg/HgO for 50 h, current retention of 98.2% | [ |
| NiSe2/NF | 254@10 mA cm‒2 335@100 mA cm‒2 | 72 | chronoamperometry at 0.8 V vs. Hg/HgO for 50 h, current retention of 92.7% | |
| Fe@Co/Se2-NRs | 200@10 mA cm‒2 | 35 | continuous operation at 100 mA cm‒2 for 72 h in an electrolyzer | [ |
| Fe-Se2 | 360@10 mA cm‒2 | 105 | — | |
| Co-Se2 | 250@10 mA cm‒2 | 67 | — | |
| NiCo2S4 | 247@10 mA cm‒2 | 62 | chronoamperometry at 1.6 V for 24 h | [ |
| NiCo3S4 | 264@10 mA cm‒2 | 68 | — | |
| NiCoS4 | 285@10 mA cm‒2 | 79 | — | |
| (Fe0.25Co0.75)S2 | 274@10 mA cm‒2 | 34 | chronopotentiometry at 20 mA cm‒2 for 60 h | [ |
| (Fe0.20Co0.80)S2 | 285@10 mA cm‒2 | 50 | — | |
| (Fe0.33Co0.67)S2 | 292@10 mA cm‒2 | 41 | — | |
| Fe0.4Co0.6Se2 | 270@10 mA cm‒2 | 36 | chronopotentiometry at 10 mA cm‒2 for 24 h | [ |
| Fe0.2Co0.8Se2 | 287@10 mA cm‒2 | 45 | — | |
| Fe0.6Co0.4Se2 | 313@10 mA cm‒2 | 52 | — | |
| FeCoNiS | 164@10 mA cm‒2 | 23 | chronopotentiometry at 10 mA cm‒2 for 800 h and 100 mA cm‒2 for 2200 h | [ |
| FeCoS | 219@10 mA cm‒2 | 28 | — | |
| CoNiS | 216@10 mA cm‒2 | 34 | — | |
| FeNiS | 251@10 mA cm‒2 | 40 | — |
Fig. 10. Schematic diagram of integrated in-situ/operando electrochemical-spectroscopy techniques for monitoring active sites and reaction mechanisms. Reprinted with permission from Ref. [193]. Copyright 2025, Springer Nature.
Fig. 11. (a) The setup of in-situ/operando Raman measurement and digital photo the in-situ test system. Inset: electrochemical cell. Reprinted with permission from Ref. [195]. Copyright 2023, Elsevier. (b) In-situ Raman spectra of Ni0.8Fe0.2Co0.1Se2 electrocatalyst during OER process. (c) Schematic diagram of in-situ transformation and possible active centers (Ni-Fe-Co: active center 1; Ni-Fe-Ni: active center 2 and Ni-Ni-Ni: active center 3). (d) On-line DEMS signals for 18O-labeled Ni0.8Fe0.2Co0.1Se2 during the OER. (e) The AEM; (f) Gibbs free energy diagrams for the OER at three active centers on the (001) surface of (Fe, Co)-doped γ-NiOOH. Reprinted with permission from Ref. [208]. Copyright 2025, Elsevier.
Fig. 12. (a) In-situ Raman spectra of Se-NiS2/CC, NiS2/CC and NiSe2/CC catalysts during OER process; comparison of the potentials required for surface reconstruction to Ni(OH)2 or NiOOH. (b) DFT calculation analysis. Gibbs free energy diagrams for NiOOH/Se-NiS2 and NiOOH/NiS2; PDOS of d-bands of Ni sites in the NiOOH/Se-NiS2 and NiOOH/NiS2; the COHP between S and Ni of NiS2 and Se-NiS2; charge density difference images for NiOOH/Se-NiS2 (upper) and NiOOH/NiS2 (lower); One-dimensional charge density difference between NiOOH and NiS2 (or Se-NiS2). Reprinted with permission from Ref. [209]. Copyright 2023, Elsevier.
Fig. 13. LSV curves and potential-dependent in-situ Raman spectra of Cu(OH)2 (a), Co(OH)2 (b), NiS2 (c), Ni(OH)2 + SO42? (d), NiSe2 (e), Ni(OH)2 + SeO32? (f) under OER conditions. (g) DFT analysis: Gibbs free energy diagrams of NiOOH and NiOOH + SeO4, DOS of Ni 3d orbitals in NiOOH and NiOOH + SeO4; differential charge density of NiOOH + SeO4. (h) Illustration of promoted OER activity of the chalcogenates-adsorbed MOOH on the surface of TMCs. Reprinted with permission from Ref. [212]. Copyright 2020, John Wiley and Sons.
Fig. 14. (a) In-situ XRD patterns of Ni3Se4/UCL-3 during the OER; Gibbs free energy diagrams of UNC, Ni3Se4/UCL-Se (Se atom exposure) and Ni3Se4/UCL-Ni (Ni atom exposure); the corresponding DOS. Reprinted with permission from Ref. [215]. Copyright 2022, Elsevier. (b) Illustration of XRD equipment integrated with a two-electrode electrochemical system; in-situ XRD patterns of c-CoSe2-CoN/NC during the OER; ORR/OER mechanism on the optimized configuration of c-CoSe2-CoN/NC; d-band centers of the CoN, c-CoSe2 and c-CoSe2-CoN; Gibbs free energy diagrams for OER and OER at four active sites, respectively; calculated *OOH adsorption and *OH desorption energy on CoN, c-CoSe2, and c-CoSe2-CoN. Reprinted with permission from Ref. [216]. Copyright 2023, John Wiley and Sons.
Fig. 15. (a) Schematic drawing of a flow electrochemical cell used for in-situ sXAS experiments. Reprinted with permission from Ref. [221]. Copyright 2019, John Wiley and Sons. (b) Summary diagram of structure information for the catalyst obtained by hard/soft-XAS. Reprinted with permission from Ref. [222]. Copyright 2024, Royal Society of Chemistry. (c) Spin state analysis under the OER conditions. Fe K-edge XANES spectra and Fe K-edge FT-EXAFS during OER process with the different potentials (vs. RHE) of OCV, 1.245 and 1.445 V in 1 mol L-1 KOH, respectively; in-situ Raman spectroscopy of CFS-ACs/CNT catalyst; Fe L-edge XANES spectra before and after stability of CFS-ACs/CNT; the orbital interactions between cations and the OER intermediates of Fe and Co during OER process according to the bond order theorem. The red region represents more favorable metal spin-orbit coupling interactions; the schematic diagram of dual-site adsorbate evolution mechanisms for coupled O-O bonding during the OER. Reprinted with permission from Ref. [218]. Copyright 2024, Springer Nature. (d) Operando k3-weighted FT EXAFS spectra of the CoS2 and Fe-OH-CoS2 at the different potentials, respectively. Reprinted with permission from Ref. [219]. Copyright 2024, John Wiley and Sons. (e) Operando XAS characterizations of CoS in 1 mol L-1 KOH for the OER. Operando Co K-edge XANES spectra; 3D contour plots of operando Co K-edge FT-EXAFS spectra; fitting of operando Co K-edge FT-EXAFS spectra. Reprinted with permission from Ref. [220]. Copyright 2024, John Wiley and Sons.
Fig. 16. (a) Operando XAFS spectra on the Co9S8-SWCNT at pH = 7 and 14 for the OER. Reprinted with permission from Ref. [223]. Copyright 2021, Royal Society of Chemistry. (b) Operando XANES and FT-EXAFS spectra of Ni K-edge and the corresponding 2D contour plots for the NiSe2@CNA@CC during chrono-potential treatment at 10 mA cm?2. (I) NiSe2 → Ni(OH)2; (II) NS-Ni(OH)2 → NS-NiOOH; and (III) NiOOH acted as the stable active catalyst for the reaction. Reprinted with permission from Ref. [224]. Copyright 2019, John Wiley and Sons.
Fig. 17. (a) Schematic diagram of in-situ liquid electrochemical transmission electron microscopy (EC-TEM). (I) In-situ EC-TEM holder from Protochips (the inset shows the tip of the holder where the miniaturized electrochemical cell is integrated); (II) In-situ disposable chip positioned at the tip of the sample holder; (III) transversal schematic view of the assembled cell. Reprinted with permission from Ref. [226]. Copyright 2019, American Chemical Society. (b) In-situ TEM observation of CoSx evolution during the OER test. (c) In-situ HRTEM images and corresponding SAED patterns of CoSx evolution to CoOOH alpha phase during the OER. (d) Chronopotentiometry curve of CoSx at a low anodic current density of 0.5 mA cm-2. (e) In-situ FTIR of CoSx with 1 mA anodic current in 1 mol L-1 KOH. Reprinted with permission from Ref. [225]. Copyright 2018, American Chemical Society.
| Electrocatalyst | Active species | Characterization | Ref. |
|---|---|---|---|
| Se-NiS2 | γ-NiOOH | In-situ Raman | [ |
| NiSe2 (NiS2) | NiOOH and SeO32‒ (SO42‒) | In-situ Raman | [ |
| Ni3Se4 | β-NiOOH | In-situ XRD | [ |
| c-CoSe2-CoN | α-CoOOH and γ-NiOOH | In-situ XRD | [ |
| Ni-Fe-S/NCQDs | β-FeOOH/NiOOH | In-situ XRD | [ |
| CoS | CoO2 species | Operando XAS | [ |
| Co9S8 | S-CoOOH | In-situ XAS | [ |
| NiSe2 | NiOOH | In-situ XAS | [ |
| (Ni, Co)3Se4 | γ-(Ni, Co)OOH | In-situ XAS | [ |
| NixFe1‒xSe2 | Ni-Fe-Se-OOH | In-situ XAS | [ |
| NiSe2/CoSe2-N | NiSe2/CoSe2@NiOOH/CoOOH | In-situ XAS | [ |
| CoSx | CoOOH | In-situ TEM | [ |
| CoFeSx | Co-O-O-Fe intermediates | In-situ XAS and Raman | [ |
| Ni0.8Fe0.2Co0.1Se2 | (Fe, Co) doped γ-NiOOH | In-situ Raman and DEMS | [ |
| CeO2-CoS1.97 | CoIV species | Operando Raman and quasi-operando XPS | [ |
| Co9S8@Fe3O4 | CoOOH@Fe3O4 | Operando Raman, FTIR, and XAS | [ |
Table 3 Summary of recent advances in the identifications of active species of IGTMC electrocatalysts for OER in alkaline conditions.
| Electrocatalyst | Active species | Characterization | Ref. |
|---|---|---|---|
| Se-NiS2 | γ-NiOOH | In-situ Raman | [ |
| NiSe2 (NiS2) | NiOOH and SeO32‒ (SO42‒) | In-situ Raman | [ |
| Ni3Se4 | β-NiOOH | In-situ XRD | [ |
| c-CoSe2-CoN | α-CoOOH and γ-NiOOH | In-situ XRD | [ |
| Ni-Fe-S/NCQDs | β-FeOOH/NiOOH | In-situ XRD | [ |
| CoS | CoO2 species | Operando XAS | [ |
| Co9S8 | S-CoOOH | In-situ XAS | [ |
| NiSe2 | NiOOH | In-situ XAS | [ |
| (Ni, Co)3Se4 | γ-(Ni, Co)OOH | In-situ XAS | [ |
| NixFe1‒xSe2 | Ni-Fe-Se-OOH | In-situ XAS | [ |
| NiSe2/CoSe2-N | NiSe2/CoSe2@NiOOH/CoOOH | In-situ XAS | [ |
| CoSx | CoOOH | In-situ TEM | [ |
| CoFeSx | Co-O-O-Fe intermediates | In-situ XAS and Raman | [ |
| Ni0.8Fe0.2Co0.1Se2 | (Fe, Co) doped γ-NiOOH | In-situ Raman and DEMS | [ |
| CeO2-CoS1.97 | CoIV species | Operando Raman and quasi-operando XPS | [ |
| Co9S8@Fe3O4 | CoOOH@Fe3O4 | Operando Raman, FTIR, and XAS | [ |
Fig. 18. Schematic illustration of the surface reconstruction process of chalcogenides during the OER. Reprinted with permission from Ref. [229]. Copyright 2025, Elsevier.
| Technique | Spatial resolution | Temporal resolution | Information probed | Advancement | Critical limitations |
|---|---|---|---|---|---|
| Raman | nm to μm | ms to s | molecular vibration; interfacial adsorbed species; phase | excellent compatibility with aqueous systems; achievable under ambient temperature and pressure | susceptible to fluorescence interference; weak signal intensity; low detection sensitivity |
| XAS | μm to nm | ms to s | valence state; coordination environment | high element specificity; unaffected by phase crystallinity; in-situ tracking of dynamic changes in the chemical state of elements | low spatial resolution; unable to localize microregions; high cost; complex data analysis |
| XRD | μm to mm | s to min | crystal structure, grain size, phase transition kinetics | strong in-situ compatibility (adapts to high/low temperature, electrochemical, and atmospheric sample stages) | insensitive to amorphous phases; the overall average conceals heterogeneities |
| HRTEM | 0.1-1 nm | s to min | directly imaging crystal lattice with real-time atomic resolution | In-situ observation of nanoscale dynamic processes; simultaneous acquisition of morphological and crystal structure information | electron beam damage; poor temporal resolution for fast dynamics |
| FTIR | 1-20 μm | s | molecular functional groups; chemical bond vibrations | In-situ compatibility with atmospheric and low-temperature scenarios; qualitative analysis of chemical composition | severe interference from aqueous systems; limited capability for characterizing inorganic materials |
| EC-MS | none | ms | volatile products of electrochemical reactions; quantitative product yield | direct correlation of electrochemical signals with products; in-situ real-time tracking of electrochemical reaction dynamics | detects only final products; unable to obtain sample structure/ chemical state information |
Table 4 Spatial resolution, temporal resolution, probed information, advancements, and limitations of selected in-situ techniques.
| Technique | Spatial resolution | Temporal resolution | Information probed | Advancement | Critical limitations |
|---|---|---|---|---|---|
| Raman | nm to μm | ms to s | molecular vibration; interfacial adsorbed species; phase | excellent compatibility with aqueous systems; achievable under ambient temperature and pressure | susceptible to fluorescence interference; weak signal intensity; low detection sensitivity |
| XAS | μm to nm | ms to s | valence state; coordination environment | high element specificity; unaffected by phase crystallinity; in-situ tracking of dynamic changes in the chemical state of elements | low spatial resolution; unable to localize microregions; high cost; complex data analysis |
| XRD | μm to mm | s to min | crystal structure, grain size, phase transition kinetics | strong in-situ compatibility (adapts to high/low temperature, electrochemical, and atmospheric sample stages) | insensitive to amorphous phases; the overall average conceals heterogeneities |
| HRTEM | 0.1-1 nm | s to min | directly imaging crystal lattice with real-time atomic resolution | In-situ observation of nanoscale dynamic processes; simultaneous acquisition of morphological and crystal structure information | electron beam damage; poor temporal resolution for fast dynamics |
| FTIR | 1-20 μm | s | molecular functional groups; chemical bond vibrations | In-situ compatibility with atmospheric and low-temperature scenarios; qualitative analysis of chemical composition | severe interference from aqueous systems; limited capability for characterizing inorganic materials |
| EC-MS | none | ms | volatile products of electrochemical reactions; quantitative product yield | direct correlation of electrochemical signals with products; in-situ real-time tracking of electrochemical reaction dynamics | detects only final products; unable to obtain sample structure/ chemical state information |
|
| [1] | 唐宇, 陈阳, 陈柯润, Edmund Qi, 刘晓旸, 陆海彦, 高宇. 铜钼协同掺杂金属有机框架双壳空心纳米球: 表面重构激活吸附物演化和晶格氧机制[J]. 催化学报, 2026, 81(2): 159-171. |
| [2] | 陆家平, 林超, 李超, 石泓杰, 刘能益, 邢万东, 汪思波, 张贵刚, 陈藤藤, 陈雄. 联吡啶整合的双恶唑基给体-受体共价有机框架用于增强光催化过氧化氢合成[J]. 催化学报, 2026, 81(2): 185-194. |
| [3] | 徐慧民, 宫萧琪, 岳楷航, 黄陈金, 朱鸿睿, 宋联杰, 李高仁. N,Te配位Fe-Co双金属位点作为高效氧电催化剂用于高性能锌空电池[J]. 催化学报, 2026, 81(2): 319-332. |
| [4] | 陈晓锋, 黄逸轩, 林万斌, 夏娇娇, 张茜瑞, 龚文杰, 简楚倩, 刘豪, 曾嘉成, 刘江, 陈宇. 锰掺杂诱导空气电极相分离实现高性能且耐久的可逆质子陶瓷电池[J]. 催化学报, 2026, 81(2): 333-343. |
| [5] | 时文博, 朱凯, 付小刚, 刘陈红, 原洋, 潘家梁, 张庆, 白正宇. 双位点限域策略调控Fe-N-C电子结构提升质子交换膜燃料电池氧还原性能[J]. 催化学报, 2026, 80(1): 293-303. |
| [6] | 肖丽媛, 王振旅, 管景奇. 多核金属有机框架材料在电催化中的研究进展[J]. 催化学报, 2026, 80(1): 59-91. |
| [7] | 门亚娜, 矫宇州, 郑妍星, 王晓晏, 陈胜利, 李朋. 质子型离子液体调控分子铁催化剂氧还原活性的pH依赖性及其电化学界面起源[J]. 催化学报, 2026, 80(1): 258-269. |
| [8] | 王舟舟, 周前程, 罗丽, 史雅然, 李浩然, 王春春, 林可聖, 王成思, 朱利兵, 韩凌云, 邢卓, 余颖. 钨掺杂稳定钼酸钴的钴-氧-钼点对点连接结构用于中性析氧反应[J]. 催化学报, 2025, 76(9): 146-158. |
| [9] | 刘欢, 秉琦明, 于良, 邓德会. 面向高效乙炔加氢制乙烯的二硫化钨限域金属原子催化剂理论预测[J]. 催化学报, 2025, 76(9): 221-229. |
| [10] | 梁诗诺, 李冯俊, 黄菲, 王心俣, 刘升卫. 轴向磷配位修饰Co-N4活性中心促进双通道H2O2光合成[J]. 催化学报, 2025, 76(9): 81-95. |
| [11] | 余成文, 梁乐程, 穆张岩, 尹绍祺, 刘欲文, 陈胜利. FeNC层稳定的L10-PtFe金属间纳米颗粒用于高效氧还原[J]. 催化学报, 2025, 75(8): 125-136. |
| [12] | 代继澳, 鲜靖林, 刘凯思, 吴植傲, 樊淼, 覃姝彤, 姜会钰, 徐卫林, 金桓宇, 万骏. 非常规亚稳态立方相二维LaMnO3用于高效碱性海水析氧反应[J]. 催化学报, 2025, 74(7): 228-239. |
| [13] | 朱晓辉, 邢浩然, 何光裕, 肖海, 陈银娟, 李隽. 石墨二炔负载的d8态Fe双原子催化剂耦合-解耦自旋态转换机制研究[J]. 催化学报, 2025, 74(7): 411-424. |
| [14] | 张昊, 熊小松, 汪涛, 吴宇平. 动态氢插层催化[J]. 催化学报, 2025, 74(7): 1-3. |
| [15] | 李晨浩, 王昊, 王卫卫, 白烁, 公忠彬, 桑勤勤, 张雨晴, 霍锋, 刘艳荣. PtCu纳米枝晶催化剂及其增强质子交换膜燃料电池稳定性研究[J]. 催化学报, 2025, 73(6): 322-333. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||