催化学报 ›› 2026, Vol. 81: 37-68.DOI: 10.1016/S1872-2067(25)64880-7

• 综述 • 上一篇    下一篇

铁族过渡金属硫属化合物组成调控以增强氧电极电催化性能

钟海红a, 徐芊牵b, 杨玮婷a, ALONSO-VANTE Nicolasc, 冯拥军b()   

  1. a 海南大学化学与化工学院, 生态文明协同创新中心, 海南海口 570228
    b 北京化工大学化学学院, 化工资源有效利用全国重点实验室, 北京市多级结构工程中心, 北京 100029
    c 上海交通大学智慧能源创新学院, 上海 200240
  • 收稿日期:2025-07-28 接受日期:2025-09-05 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: yjfeng@mail.buct.edu.cn (冯拥军).
  • 基金资助:
    国家自然科学基金(22368020);海南大学高层次人才科研启动基金((KYQDZR)23055)

Composition regulation of iron-group transition metal chalcogenides for the oxygen electrocatalysis: Electronic structure and surface reconstruction

Haihong Zhonga, Qianqian Xub, Weiting Yanga, Nicolas Alonso-Vantec, Yongjun Fengb()   

  1. a School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, Hainan, China
    b State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
    c College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2025-07-28 Accepted:2025-09-05 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: yjfeng@mail.buct.edu.cn (Y. Feng).
  • About author:Dr. Yongjun Feng, born in January 1976, is a full professor and Ph.D. supervisor in Beijing University of Chemical Technology. In 2022, he was recognized by the National Major Talent Project and the Shandong Mount Taishan Industrial Leading Talent Project. He currently holds the position of Director at the Talent Introduction Office of Beijing University of Chemical Technology, and serves in various esteemed roles such as a member of the International Symposium on Intercalation Compounds Committee (ISIC), a Senior Member of the Chinese Chemical Society, Vice Chairman of the Expert Committee of the China Renewable Resources Industry Technology Innovation Strategy Alliance, and a member of the Anhui Province New Materials Industry Development Strategy Advisory Committee. In January 2007, he earned his Ph.D. in Chemistry from Blaise Pascal University in France, and subsequently pursued postdoctoral research at the University of Poitiers in France. In 2011, he joined the State Key Laboratory of Chemical Resources Engineering (CRE), focusing on the fundamental, applied, and engineering research of intercalated structure functional materials, porous carriers and adsorption materials, and non-noble metal electrocatalytic materials. He has led more than 30 projects entrusted by international, national and enterprise entities, and built 8 sets of industrial plants with a scale of more than 100 tons per year, including 2 under his direct leadership. He has published more than 120 papers in leading international journals as the first author or corresponding author, filed more than 60 national invention patents, of which 46 were granted; and served on the editorial boards of journals including “Applied Clay Science” and “Fine Chemicals.” Multiple patented technologies have been successfully commercialized.
  • Supported by:
    National Natural Science Foundation of China(22368020);Research Foundation for Talented Scholars of Hainan University((KYQDZR)23055)

摘要:

面对日益严峻的能源挑战, 可持续绿色能源转换技术的开发和应用已受到广泛关注. 作为以电能驱动能源转化的关键技术, 电催化技术被视为解决能源危机的极具前景的方案, 广泛应用于能源转换与存储、环境治理、绿色化学品合成等领域. 然而, 氧电极反应(包括氧还原反应(ORR)与析氧反应(OER))受限于缓慢的电子转移动力学和复杂的多步吸附-解吸过程, 反应过电位较高, 这严重制约了燃料电池、电解槽等设备的能量转换效率. 在实际体系中, 电化学反应的动力学能垒主要表现为活化过电位、欧姆过电位、浓度过电位等能量损失. 其中, 活化过电位由反应的吉布斯自由能垒决定, 其本质取决于催化剂的电子结构. 铁族过渡金属硫属化合物(过渡金属TM = Fe、Co、Ni; 硫属元素Ch = S、Se)因具有天然丰度高、成本低、环境友好且可通过组成调控实现对其电子结构精准修饰等特性, 已成为极具发展潜力的ORR与OER电催化剂. 在此背景下, 众多研究者已开展大量研究, 致力于通过合理设计该类化合物, 优化其电子转移动力学并提升材料稳定性, 以推动其在可持续能源系统中的实际应用.

本文系统总结了近年来铁族过渡金属硫属化合物在多组分调控策略方面的研究进展. 首先简要介绍了ORR和OER的反应机理及电催化剂设计原则. 随后, 通过典型案例, 重点阐述了阴离子取代、阳离子掺杂及零价元素引入等手段对材料电子结构、配位环境和催化性能的调控作用, 指出通过调节d带中心、自旋态等电子结构特性以优化中间体吸附强度, 是提升催化动力学的关键机制. 随后, 针对铁族过渡金属硫属化合物在OER过程中发生的动态表面重构(如阳离子氧化、阴离子浸出), 总结对比了几种先进原位表征技术在捕捉电化学过程中结构演变方面的优势与局限. 最后, 分析了当前铁族过渡金属硫属化合物在ORR/OER催化研究中面临的主要挑战, 并对未来发展方向提出展望, 包括: (1)建立基于局部电子结构的构效关系; (2)发展精准调控活性位点配位环境的合成方法; (3)实现对表面重构路径的有效控制.

本综述旨在为理解铁族过渡金属硫属化合物电催化材料的组成设计、性能优化与实际应用提供系统参考, 并为推动该领域进一步发展提供思路.

关键词: 铁族过渡金属硫属化合物, 析氧反应, 氧还原反应, 电子结构, 表面重构

Abstract:

Iron-group transition metal chalcogenides (IGTMCs) have emerged as promising electrocatalysts due to their tailorable electronic structures through composition engineering. This review summarizes the recent advancements in multi-component regulatory strategies employed in advanced IGTMC electrocatalysts, including anion substitution, cation doping, and the incorporation of zero-valent elements. Particular emphasis is placed on the roles of secondary and tertiary doping configurations, and chalcogen modulation in enhancing the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) of IGTMC electrocatalysts. Thus, regulating the electronic structure and optimizing the adsorption strengths on this family of materials are strategies to boost catalytic kinetics. Notably, dynamic surface reconstruction (e.g., oxidation) of IGTMC electrocatalysts during the OER has recently attracted significant attention. Advanced in-situ/operando characterization insights into reconstruction phenomenon of IGTMC electrocatalysts for OER process are critically analyzed. Finally, the challenges and prospects of IGTMC electrocatalysts for ORR/OER electrocatalysis are outlined.

Key words: Iron-group transition metal, chalcogenides, Oxygen evolution reaction, Oxygen reduction reaction, Electronic structure, Surface reconstruction