Chinese Journal of Catalysis ›› 2015, Vol. 36 ›› Issue (5): 750-756.DOI: 10.1016/S1872-2067(14)60294-1
• Articles • Previous Articles Next Articles
Xuejun Xua,b, Qiang Fua, Xinhe Baoa
Received:2014-12-15
Revised:2015-01-19
Online:2015-04-17
Published:2015-04-17
Contact:
Qiang Fu
Supported by:This work was supported by the National Natural Science Foundation of China (21222305, 21321001, 21103181), and the National Basic Research Program of China (973 Program, 2013CB834603, 2013CB933100, 2011CBA00503).
Xuejun Xu, Qiang Fu, Xinhe Bao. MoOx-promoted Pt catalysts for the water gas shift reaction at low temperatures[J]. Chinese Journal of Catalysis, 2015, 36(5): 750-756.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(14)60294-1
| [1] Guo P J, Chen L F, Yang Q Y, Qiao M H, Li H, Li H X, Xu H L, Fan K N. Int J Hydrogen Energy, 2009, 34: 2361 [2] Sagata K, Imazu N, Yahiro H. Catal Today, 2013, 201: 145 [3] Iida H, Ogawa D, Kumasaki T, Iida K, Igarashi A. J Chem Eng Jpn, 2012, 45: 46 [4] Andreeva D, Idakiev V, Tabakova T, Andreev A, Giovanoli R. J Catal, 1996, 158: 354 [5] Tibiletti D, Amieiro-Fonseca A, Burch R, Chen Y, Fisher J M, Goguet A, Hardacre C, Hu P, Thompsett A. J Phys Chem B, 2005, 109: 22553 [6] Kim C H, Thompson L T. J Catal, 2005, 230: 66 [7] Panagiotopoulou P, Kondarides D I. J Catal, 2004, 225: 327 [8] Gonzalez I D, Navarro R M, Alvarez-Galvan M C, Rosa F, Fierro J L G. Catal Commun, 2008, 9: 1759 [9] Panagiotopoulou P, Kondarides D I. Catal Today, 2006, 112: 49 [10] Ratnasamy C, Wagner J P. Catal Rev-Sci Eng, 2009, 51: 325 [11] Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Perez M. Science, 2007, 318: 1757 [12] Fu Q, Li W X, Yao Y X, Liu H Y, Su H Y, Ma D, Gu X K, Chen L M, Wang Z, Zhang H, Wang B, Bao X H. Science, 2010, 328: 1141 [13] Liu Z F, Hu J E, Wang Q, Gaskell K, Frenkel A I, Jackson G S, Eichhorn B. J Am Chem Soc, 2009, 131: 6924 [14] Grgur B N, Markovic N M, Ross P N. J Phys Chem B, 1998, 102: 2494 [15] Mukerjee S, Urian R C, Lee S J, Ticianelli E A, McBreen J. J Electrochem Soc, 2004, 151: A1094 [16] Santiago E I, Camara G A, Ticianelli E A. Electrochim Acta, 2003, 48: 3527 [17] Dorazio L, Ruettinger W, Castaldi M J, Farrauto R. Top Catal, 2008, 51: 68 [18] Ruettinger W, Liu X S, Xu X M, Farrauto R J. Top Catal, 2008, 51: 60 [19] Williams W D, Bollmann L, Miller J T, Delgass W N, Ribeiro F H. Appl Catal B, 2012, 125: 206 [20] Wang J G, Hammer B. J Catal, 2006, 243: 192 [21] Bazin D, Sayers D, Rehr J J, Mottet C. J Phys Chem B, 1997, 101: 5332 [22] Ichikuni N, Iwasawa Y. Catal Lett, 1993, 20: 87 [23] Behafarid F, Ono L K, Mostafa S, Croy J R, Shafai G, Hong S, Rahman T S, Bare S R, Cuenya B R. Phys Chem Chem Phys, 2012, 14: 11766 [24] Choi S H, Lee J S. J Catal, 1997, 167: 364 [25] Ma L, Zhao X, Si F Z, Liu C P, Liao J H, Liang L, Xing W. Electrochim Acta, 2010, 55: 9105 [26] Park J H, Kim Y T, Park E D, Lee H C, Kim J, Lee D. ChemCatChem, 2013, 5: 806 [27] Paal Z, Tetenyi P, Muhler M, Wild U, Manoli J M, Potvin C. J Chem Soc Faraday T, 1998, 94: 459 [28] Deng X, Quek S Y, Biener M M, Biener J, Kang D H, Schalek R, Kaxiras E, Friend C M. Surf Sci, 2008, 602: 1166 [29] Xu H, Fu Q, Guo X G, Bao X H. ChemCatChem, 2012, 4: 1645 [30] Zheng F, Alayoglu S, Guo J H, Pushkarev V, Li Y M, Glans P A, Chen J I, Somorjai G. Nano Lett, 2011, 11: 847 [31] Sun D P, Gu X K, Ouyang R H, Su H Y, Fu Q, Bao X H, Li W X. J Phys Chem C, 2012, 116: 7491 [32] Sakamoto T, Morishima H, Yoshida A, Naito S. Catal Lett, 2009, 131: 419 [33] Dietrich P J, Lobo-Lapidus R J, Wu T P, Sumer A, Akatay M C, Fingland B R, Guo N, Dumesic J A, Marshall C L, Stach E, Jellinek J, Delgass W N, Ribeiro F H, Miller J T. Top Catal, 2012, 55: 53 [34] Zafeiratos S, Papakonstantinou G, Jacksic M M, Neophytides S G. J Catal, 2005, 232: 127 [35] Rodriguez J A, Liu R, Hrbek J, Perez M, Evans J. J Mol Catal A, 2008, 281: 59 [36] Gao D F, Cai F, Xu Q Q, Wang G X, Pan X L, Bao X H. J Energ Chem, 2014, 23: 694 [37] Sakamoto T, Kikuchi H, Miyao T, Yoshida A, Naito S. Appl Catal A, 2010, 375: 156 [38] Elezovic N R, Babic B M, Radmilovic V R, Gojkovic S L, Krstajic N V, Vracar L M. J Power Sources, 2008, 175: 250 [39] Cui Z M, Jiang S P, Li C M. Chem Commun, 2011, 47: 8418 [40] Vellacheri R, Unni S M, Nahire S, Kharul U K, Kurungot S. Electrochim Acta, 2010, 55: 2878 |
| [1] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
| [2] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydro-genation to formic acid [J]. Chinese Journal of Catalysis, 2023, 47(4): 214-221. |
| [3] | Zhuogen Li, Qadeer Ul Hassan, Weibin Zhang, Lujun Zhu, Jianzhi Gao, Xianjin Shi, Yu Huang, Peng Liu, Gangqiang Zhu. Promotion of dual-reaction pathway in CO2 reduction over Pt0/SrTiO3‒δ: Experimental and theoretical verification [J]. Chinese Journal of Catalysis, 2023, 46(3): 113-124. |
| [4] | Yujie Li, Yuanyuan Liu, Zeyan Wang, Peng Wang, Zhaoke Zheng, Hefeng Cheng, Ying Dai, Baibiao Huang. Enhanced photocatalytic H2O2 production over Pt(II) deposited boron containing metal-organic framework via suppressing the simultaneous decomposition [J]. Chinese Journal of Catalysis, 2023, 45(2): 132-140. |
| [5] | Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2023, 55(12): 44-115. |
| [6] | Cong Liu, Xuanhao Mei, Ce Han, Xue Gong, Ping Song, Weilin Xu. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1618-1633. |
| [7] | Qing Yao, Jiabo Le, Shize Yang, Jun Cheng, Qi Shao, Xiaoqing Huang. A trace of Pt can significantly boost RuO2 for acidic water splitting [J]. Chinese Journal of Catalysis, 2022, 43(6): 1493-1501. |
| [8] | Lili Zhang, Suyu Jiang, Wei Ma, Zhen Zhou. Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway [J]. Chinese Journal of Catalysis, 2022, 43(6): 1433-1443. |
| [9] | Jinling Cheng, Dingsheng Wang. 2D materials modulating layered double hydroxides for electrocatalytic water splitting [J]. Chinese Journal of Catalysis, 2022, 43(6): 1380-1398. |
| [10] | Wei Xiong, Min Zhou, Hao Li, Zhao Ding, Da Zhang, Yaokang Lv. Electrocatalytic ammonia synthesis catalyzed by mesoporous nickel oxide nanosheets loaded with Pt nanoparticles [J]. Chinese Journal of Catalysis, 2022, 43(5): 1371-1378. |
| [11] | Wei Zhong, Jiachao Xu, Ping Wang, Bicheng Zhu, Jiajie Fan, Huogen Yu. Novel core-shell Ag@AgSex nanoparticle co-catalyst: In situ surface selenization for efficient photocatalytic H2 production of TiO2 [J]. Chinese Journal of Catalysis, 2022, 43(4): 1074-1083. |
| [12] | Francisco J. Sarabia, Víctor Climent, Juan M. Feliu. Effect of the interfacial electric field on the HER on Pt(111) modified with iron adatoms in alkaline media [J]. Chinese Journal of Catalysis, 2022, 43(11): 2826-2836. |
| [13] | Haoran Yu, Danxu Liu, Hengyi Wang, Haishuang Yu, Qingyun Yan, Jiahui Ji, Jinlong Zhang, Mingyang Xing. Singlet oxygen synergistic surface-adsorbed hydroxyl radicals for phenol degradation in CoP catalytic photo-Fenton [J]. Chinese Journal of Catalysis, 2022, 43(10): 2678-2689. |
| [14] | Shipeng Tang, Yang Xia, Jiajie Fan, Bei Cheng, Jiaguo Yu, Wingkei Ho. Enhanced photocatalytic H2 production performance of CdS hollow spheres using C and Pt as bi-cocatalysts [J]. Chinese Journal of Catalysis, 2021, 42(5): 743-752. |
| [15] | Naixu Li, Meiyou Huang, Jiancheng Zhou, Maochang Liu, Dengwei Jing. MgO and Au nanoparticle Co-modified g-C3N4 photocatalysts for enhanced photoreduction of CO2 with H2O [J]. Chinese Journal of Catalysis, 2021, 42(5): 781-794. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||