Chinese Journal of Catalysis ›› 2024, Vol. 60: 219-230.DOI: 10.1016/S1872-2067(23)64645-5
• Articles • Previous Articles Next Articles
Yanyan Zhaoa, Shumin Zhangb, Zhen Wuc, Bicheng Zhud, Guotai Sund, Jianjun Zhangd,*()
Received:
2024-01-30
Accepted:
2024-02-29
Online:
2024-05-18
Published:
2024-05-20
Contact:
E-mail: Supported by:
Yanyan Zhao, Shumin Zhang, Zhen Wu, Bicheng Zhu, Guotai Sun, Jianjun Zhang. Regulation of d-band center of TiO2 through fluoride doping for enhancing photocatalytic H2O2 production activity[J]. Chinese Journal of Catalysis, 2024, 60: 219-230.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64645-5
Fig. 2. (a) Preparation processes of F/TiO2. TEM image (b) and the corresponding HRTEM image (c) of F/TiO2. (d) HAADF image of F/TiO2 and the EDS mapping images of F, O, and Ti elements.
Fig. 3. XPS depth profiling spectra for F/TiO2 at different sputtering times with C 1s peak at 284.6 eV as a reference. Atomic percentage (at%) distribution of Ti, O, and F (a), and high-resolution spectra of Ti 2p (b), O 1s (c), and F 1s (d). Here, 0 s is equivalent to a standard surface scan without ion sputtering, with spectra obtained after 60-180 s of sputtering corresponding to the elemental composition of the pellet bulk. Strength of the ion gun: 1000, 2000 eV.
Fig. 6. DOS for TiO2 (a) and F/TiO2 (b). (c) Calculated Ti d orbital DOS for both TiO2 and F/TiO2 surface phases. (d) Schematic diagram illustrating the optimization of antibonding-orbital occupancy of Ti?Oads for strengthening the adsorption of active Ti sites toward atomic oxygen.
Fig. 7. (a) Zeta potential of the as-prepared TiO2 and F/TiO2 in DI water. (b) O2-TPD patterns of TiO2 and F/TiO2. In situ DRIFTS spectra of O2 adsorption over TiO2 (c) and F/TiO2 (d).
Fig. 8. Photocatalytic H2O2 production performance of the as-prepared samples with ethanol as the sacrificial reagent (a) and in pure water without sacrificial reagent (b), with the H2O2 production rates summarized in (c). (d) Cycling experiments over F/TiO2 photocatalyst. (e) Photocatalytic H2O2 (1 mmol·L?1) decomposition over the as-prepared samples. (f) Comparison of ORR for H2O2 production over F/TiO2 in O2, air, and N2 with ethanol as the sacrificial agent.
Fig. 9. (a) DMPO spin-trapping EPR spectra for superoxide radical (·O2?). (b) Amount of ·O2? over TiO2 and F/TiO2 photocatalyst. PL spectra (c), TRPL spectra (d), TPR experiments (e), and EIS analysis (f) of the as-prepared TiO2 and F/TiO2. Rs, Rct, and CPE represent the electrode solution resistance, interfacial charge transfer resistance, and constant phase element, respectively.
Fig. 10. Pseudocolor plots of TiO2 (a) and F/TiO2 (b). fs-TA spectra signals at indicated delay times measured with 325 nm pump pulse excitation over TiO2 (c) and F/TiO2 (d). (e) Normalized decay kinetic curves of GSB peaks in fs-TA spectra of TiO2 and F/TiO2. (f) Schematic diagrams for electrons transfer pathway and improved photogenerated carrier separation efficiency over F/TiO2.
|
[1] | Tingting Yang, Jing Wang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Ipolymer Cd3(C3N3S3)2/Zn3(C3N3S3)2 S-scheme heterojunction enhances photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 157-167. |
[2] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[3] | Jiaming Li, Yuan Li, Xiaotian Wang, Zhixiong Yang, Gaoke Zhang. Atomically dispersed Fe sites on TiO2 for boosting photocatalytic CO2 reduction: Enhanced catalytic activity, DFT calculations and mechanistic insight [J]. Chinese Journal of Catalysis, 2023, 51(8): 145-156. |
[4] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[5] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[6] | Weikang Wang, Shaobin Mei, Haopeng Jiang, Lele Wang, Hua Tang, Qinqin Liu. Recent advances in TiO2-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 55(12): 137-158. |
[7] | Pengye Zhang, Wenjin Dong, Yuanyuan Zhang, Li-Nan Zhao, Hualei Yuan, Chuanjun Wang, Wenshuo Wang, Hanxiao Wang, Hongyu Zhang, Jian Liu. Metalated carbon nitride with facilitated electron transfer pathway for selective NADH regeneration and photoenzyme-coupled CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 54(11): 188-198. |
[8] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[9] | Zhiwei Li, Huiting Huang, Wenjun Luo, Yingfei Hu, Rongli Fan, Zhi Zhu, Jun Wang, Jianyong Feng, Zhaosheng Li, Zhigang Zou. Electrochemical creation of surface charge transfer channels on photoanodes for efficient solar water splitting [J]. Chinese Journal of Catalysis, 2022, 43(9): 2342-2353. |
[10] | Junze Zhao, Min Xue, Mengxia Ji, Bin Wang, Yu Wang, Yingjie Li, Ziran Chen, Huaming Li, Jiexiang Xia. “Electron collector” Bi19S27Br3 nanorod-enclosed BiOBr nanosheet for efficient CO2 photoconversion [J]. Chinese Journal of Catalysis, 2022, 43(5): 1324-1330. |
[11] | Zicong Jiang, Yong Zhang, Liuyang Zhang, Bei Cheng, Linxi Wang. Effect of calcination temperatures on photocatalytic H2O2-production activity of ZnO nanorods [J]. Chinese Journal of Catalysis, 2022, 43(2): 226-233. |
[12] | Min Zhang, Yunfeng Li, Wei Chang, Wei Zhu, Luohong Zhang, Renxi Jin, Yan Xing. Negative inductive effect enhances charge transfer driving in sulfonic acid functionalized graphitic carbon nitride with efficient visible-light photocatalytic performance [J]. Chinese Journal of Catalysis, 2022, 43(2): 526-535. |
[13] | Yu Zhang, Ling Zhang, Di Zeng, Wenjing Wang, Juxue Wang, Weimin Wang, Wenzhong Wang. An efficient strategy for photocatalytic hydrogen peroxide production over oxygen-enriched graphitic carbon nitride with sodium phosphate [J]. Chinese Journal of Catalysis, 2022, 43(10): 2690-2698. |
[14] | Shunichi Fukuzumi, Yong-Min Lee, Wonwoo Nam. Recent progress in production and usage of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2021, 42(8): 1241-1252. |
[15] | Jing Li, Xiang Sun, Yongzheng Duan, Dongmei Jia, Yuejin Li, Jianguo Wang. Enhanced oxygen reduction reaction performance over Pd catalysts by oxygen-surface-modified SiC [J]. Chinese Journal of Catalysis, 2021, 42(6): 963-970. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||