Chinese Journal of Catalysis ›› 2024, Vol. 63: 109-123.DOI: 10.1016/S1872-2067(24)60070-7
• Articles • Previous Articles Next Articles
Qiao-Ling Mo,1, Rui Xiong,1, Jun-Hao Dong, Bai-Sheng Sa*(), Jing-Ying Zheng, Qing Chen, Yue Wu, Fang-Xing Xiao*(
)
Received:
2024-03-08
Accepted:
2024-06-05
Online:
2024-08-18
Published:
2024-08-19
Contact:
*E-mail: bssa@fzu.edu.cn (B.-S. Sa), fxxiao@fzu.edu.cn (F.-X. Xiao).
About author:
1Contributed equally to this work.
Supported by:
Qiao-Ling Mo, Rui Xiong, Jun-Hao Dong, Bai-Sheng Sa, Jing-Ying Zheng, Qing Chen, Yue Wu, Fang-Xing Xiao. Identification of origin of insulating polymer maneuvered photoredox catalysis[J]. Chinese Journal of Catalysis, 2024, 63: 109-123.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60070-7
Fig. 1. (a) Schematic illustration of electrostatic self-assembly of bPEI/ZIS nanocomposites. (b) XRD patterns of ZIS and 15bPEI/ZIS. (c) DRS results of ZIS and 15bPEI/ZIS with corresponding transformed plots calculated by the Kubelka-Munk function vs. photon energy (inset). High-resolution Zn 2p (d), In 3d (e), S 2p (f) and N 1s (g) spectra of ZIS and 15bPEI/ZIS. AFM analysis with height profiles in the inset (h), TEM (i) and HRTEM (j) images of 15bPEI/ZIS with SAED pattern in the inset. (k) TEM-EDS mapping result of 15bPEI/ZIS nanocomposite for Zn, In, S, N, and C elements.
Fig. 2. (a) Photoactivities of ZIS and 15bPEI/ZIS toward anaerobic photocatalytic reduction of a series of aromatic nitro compounds including 2-NA, 3-NA, 4-NA, 2-NP, 3-NP, 4-NP, NB, 4-nitrotoluene, 4-nitroanisole and 4-nitroacetophenone with adding ammonium formate as hole scavenger under visible light irradiation (λ > 420 nm). (b) Photoactivities of ZIS, 15PAH/ZIS, 15LPEI/ZIS and ZIS@amine-containing organic molecules (Ethylenediamine, N,N-Dimethylenediamine, N,N,N,N-Tetramethylenediamine and Triethylamine) toward photoreduction of 4-NA under the same conditions with corresponding molecular structures clearly displayed. (c) Photoactivities of CIS and 15bPEI/CIS (25 min), In2S3 and 15bPEI/In2S3 (25 min), and CdS and 15bPEI/CdS (10 min) toward photoreduction of 4-NA. (d) Photoactivities of ZIS, ZIS@xSiO2, and ZIS@xSiO2-15bPEI (x = 1, 2, 3 mL TEOS) with different SiO2 coating thickness, ZIS@3SiO2-Exh (x = 1, 2, 4 h), ZIS@3SiO2-Exh-15bPEI with different etching time, and the optimal 15bPEI/ZIS toward photoreduction of 4-NA. HRTEM images of SiO2-coated ZIS without etching and with etching for different time including ZIS@3SiO2 (e), ZIS@3SiO2-E1h (f), ZIS@3SiO2-E2h (g), and ZIS@3SiO2-E4h (h) with corresponding schematic models displayed in the insets. (i) High angle annular dark-field (HAADF) TEM images of ZIS@3SiO2-E4h nanocomposite with elemental mapping results.
Fig. 3. Characterizations of photoexcited charge separation efficiency. Ultrafast TA kinetics at a probe wavelength of 600 nm for 15bPEI/ZIS (a) and ZIS (b). The TA signal (i.e., differential absorbance, ΔA) is given in mOD, where OD stands for the optical density. (c) Time-resolved transient PL decay curves of ZIS and 15bPEI/ZIS under an excitation wavelength of 540 nm. (d) Room-temperature PL spectra of ZIS and 15bPEI/ZIS. Transient photocurrent responses (e) and anodic transient dynamics (f) of ZIS and 15bPEI/ZIS under visible light irradiation (λ > 420 nm, inset: on-off I-t results). (g) Open-circuit-potential decay curves of ZIS and 15bPEI/ZIS. (h) Nyquist plots of EIS results for ZIS and 15bPEI/ZIS under visible light irradiation (λ > 420 nm). (i) Schematic illustration of the PEC water dissociation mechanism.
Fig. 4. Plot of charge density difference (violet: charge depletion, skyblue: charge accumulation) for the most energy favorable model of H2O (a) and 4-NA (b) molecular absorbed on the ZIS@bPEI monolayer surface. (c) EPR spectra of ZIS and 15bPEI/ZIS. (d) Zn K-edge XANES spectra of Zn foil, ZIS and 15bPEI/ZIS. (e) k3-weighted Fourier transform (FT) χ(k) function of the EXAFS spectra for Zn foil, ZIS and 15bPEI/ZIS. (f) CV curves of bPEI with different concentrations (15, 30, 60 mg mL?1) in CH2Cl2 with 0.1 mol L?1 tetrabutylammonium tetrafluoroborate for scanning profile of ?1.5?1.5 V. (g) Schematic illustration of the photocatalytic mechanism of bPEI/ZIS nanocomposite.
|
[1] | Yanyan Zhao, Shumin Zhang, Zhen Wu, Bicheng Zhu, Guotai Sun, Jianjun Zhang. Regulation of d-band center of TiO2 through fluoride doping for enhancing photocatalytic H2O2 production activity [J]. Chinese Journal of Catalysis, 2024, 60(5): 219-230. |
[2] | Tingting Yang, Jing Wang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Ipolymer Cd3(C3N3S3)2/Zn3(C3N3S3)2 S-scheme heterojunction enhances photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 157-167. |
[3] | Ke-Gong Cao, Tian-Yu Gao, Li-Li Liao, Chuan-Kun Ran, Yuan-Xu Jiang, Wei Zhang, Qi Zhou, Jian-Heng Ye, Yu Lan, Da-Gang Yu. Photocatalytic carboxylation of styrenes with CO2 via C=C double bond cleavage [J]. Chinese Journal of Catalysis, 2024, 56(1): 74-80. |
[4] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[5] | Xin Yuan, Hai-Bin Fan, Jie Liu, Long-Zhou Qin, Jian Wang, Xiu Duan, Jiang-Kai Qiu, Kai Guo. Recent advances in photoredox catalytic transformations by using continuous-flow technology [J]. Chinese Journal of Catalysis, 2023, 50(7): 175-194. |
[6] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[7] | Lili Zhang, Yuhang Li, Zhenyu Guo, Yantao Li, Nian Li, Weipeng Li, Chengjian Zhu, Jin Xie. Photoredox deoxygenative allylation of carboxylic acids via selective 1,6-addition of acyl radicals to electron-deficient 1,3-dienes [J]. Chinese Journal of Catalysis, 2023, 50(7): 215-221. |
[8] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[9] | Weikang Wang, Shaobin Mei, Haopeng Jiang, Lele Wang, Hua Tang, Qinqin Liu. Recent advances in TiO2-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 55(12): 137-158. |
[10] | Pengye Zhang, Wenjin Dong, Yuanyuan Zhang, Li-Nan Zhao, Hualei Yuan, Chuanjun Wang, Wenshuo Wang, Hanxiao Wang, Hongyu Zhang, Jian Liu. Metalated carbon nitride with facilitated electron transfer pathway for selective NADH regeneration and photoenzyme-coupled CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 54(11): 188-198. |
[11] | Zhi-Yu Bo, Si-Shun Yan, Tian-Yu Gao, Lei Song, Chuan-Kun Ran, Yi He, Wei Zhang, Guang-Mei Cao, Da-Gang Yu. Visible-light photoredox-catalyzed selective carboxylation of C(sp2)-F bonds in polyfluoroarenes with CO2 [J]. Chinese Journal of Catalysis, 2022, 43(9): 2388-2394. |
[12] | Zhiwei Li, Huiting Huang, Wenjun Luo, Yingfei Hu, Rongli Fan, Zhi Zhu, Jun Wang, Jianyong Feng, Zhaosheng Li, Zhigang Zou. Electrochemical creation of surface charge transfer channels on photoanodes for efficient solar water splitting [J]. Chinese Journal of Catalysis, 2022, 43(9): 2342-2353. |
[13] | Ke Jing, Ming-Kai Wei, Si-Shun Yan, Li-Li Liao, Ya-Nan Niu, Shu-Ping Luo, Bo Yu, Da-Gang Yu. Visible-light photoredox-catalyzed carboxylation of benzyl halides with CO2: Mild and transition-metal-free [J]. Chinese Journal of Catalysis, 2022, 43(7): 1667-1673. |
[14] | Junze Zhao, Min Xue, Mengxia Ji, Bin Wang, Yu Wang, Yingjie Li, Ziran Chen, Huaming Li, Jiexiang Xia. “Electron collector” Bi19S27Br3 nanorod-enclosed BiOBr nanosheet for efficient CO2 photoconversion [J]. Chinese Journal of Catalysis, 2022, 43(5): 1324-1330. |
[15] | Peng-Zi Wang, Wen-Jing Xiao, Jia-Rong Chen. Recent advances in radical-mediated transformations of 1,3-dienes [J]. Chinese Journal of Catalysis, 2022, 43(3): 548-557. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||