Chinese Journal of Catalysis ›› 2025, Vol. 72: 187-198.DOI: 10.1016/S1872-2067(25)64651-1
• Articles • Previous Articles Next Articles
Fenli Liua,1, Man Yangb,1, Jianglin Duana, Zhiyu Yina, Mingyang Shia, Fuqing Chena, Huifeng Xionga, Xin Liuc, Wengang Liue, Qixing Xiaf, Shaodong Sunb, Dan Fengg, Haifeng Qid,*(), Yong Qine,h,*(
), Yujing Rena,i,*(
)
Received:
2024-12-11
Accepted:
2025-03-01
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: qih11@cardiff.ac.uk (H. Qi), qinyong@qust.edu.cn (Y. Qin), renyj@nwpu.edu.cn (Y. Ren).
About author:
1 Contributed equally to this work.
Supported by:
Fenli Liu, Man Yang, Jianglin Duan, Zhiyu Yin, Mingyang Shi, Fuqing Chen, Huifeng Xiong, Xin Liu, Wengang Liu, Qixing Xia, Shaodong Sun, Dan Feng, Haifeng Qi, Yong Qin, Yujing Ren. Peripheral NV-induced electron transfer to Fe1 single atoms for highly efficient O2 activation[J]. Chinese Journal of Catalysis, 2025, 72: 187-198.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64651-1
Fig. 1. Schematic diagram of flavin-dependent monooxygenase and Fe1--NV/CN single-atom catalyst for the transformation of O2 into ROS. (a) The NAD(P)H and reduced flavin with nitrogen-containing heterocycles serve as the excited electron supplier in O2 to ROS transformation on Fe1-N4-S1 active center. (b) The nitrogen vacancy on carbon nitride surface facilitates the electron delocalization to adjacent Fe1 single-atom site for O2 activation.
Fig. 2. Schematic illustration of catalyst preparation and characterizations for Fe1--NV/CN catalyst. (a) Schematic illustration for Fe1--NV/CN catalyst synthesis. (b) N2 adsorption-desorption isotherms on Fe1--NV/CN. (c) XRD pattern of Fe1--NV/CN and CN samples. SEM image (scale bar = 3 μm) (d), HAADF-STEM (scale bar = 200 nm) (e), EDS-mapping images (scale bar = 200 nm) (f), and AC-HAADF-STEM (scale bar = 2 nm) image (g) of Fe1--NV/CN catalyst.
Fig. 3. Structural characterization of Fe1--NV/CN catalyst. N 1s XPS spectra (a), ratio of different N species to C (b), and ESR spectra (c) for CN and Fe1--NV/CN samples. Fe K-edge XANES (d) and FT-EXAFS (e) spectra of Fe1--NV/CN and Fe1/CN samples. The intensities of Fe Foil, FeO and Fe2O3 references are respectively multiplied by 1/15, 1/2 and 1/5. WT-EXAFS spectra (f) and EXAFS fitting curve (g) of Fe1--NV/CN and Fe1/CN samples. (h) The structural illustration of Fe1--NV sites on CN surface.
Fig. 4. Catalytic aerobic oxidation of ethylbenzene on Fe1--NV/CN catalyst. (a) Catalytic performance of CN, Fe1--NV/CN and Fe1/CN samples in aerobic oxidation of ethylbenzene. The apparent activation energy of Fe1--NV/CN (b) and Fe1/CN (c). (d) The catalytic activity comparison between Fe1--NV/CN and reported metal-based catalysts in aerobic oxidation of ethylbenzene. (e) The catalytic stability test of Fe1--NV/CN.
Fig. 5. Substrate scope of catalytic aerobic oxidations on Fe1--NV/CN catalyst. (a) Oxidative dehydrogenation of heterocycles on Fe1--NV/CN catalyst. (b) Selective oxidation of amines towards imine synthesis on Fe1--NV/CN catalyst. (c) Selective oxidation of alcohol to aldehyde on Fe1--NV/CN catalyst. (d) Selective oxidative of C-H bond towards ketones synthesis on Fe1--NV/CN catalyst. Reaction conditions: a 0.5 mmol substrate, 20 mg catalyst, 2 mL H2O, 10 bar air, 100 °C, isolated yield; b 120 °C. c 0.5 mmol substrate, 20 mg catalyst, 2 mL toluene, 30 bar air, 100 °C, 24 h, GC yield; d 1 mL substrate, 50 mg catalyst, 40 bar air, 120 °C, GC yield; 60 bar air, 150 °C.
Fig. 6. In-situ spectral characterization of O2 activation on Fe1--NV/CN and Fe1/CN catalysts. The quasi-situ XANES (a) and FT-EXAFS (b) spectra of Fe1--NV/CN and Fe1/CN catalysts with the sequential introduction of O2 and ethylbenzene (the intensity of Fe Foil is multiplied by 1/8). (c) The quasi-situ 57Fe M?ssbauer spectrum of Fe1--NV/CN catalyst with the introduction of O2. (d) The ESR spectra of Fe1--NV/CN and Fe1/CN with the addition of O2.
|
[1] | Tao Ban, Jian-Wei Wang, Xi-Yang Yu, Hai-Kuo Tian, Xin Gao, Zheng-Qing Huang, Chun-Ran Chang. Machine learning-assisted screening of SA-FLP dual-active-site catalysts for the production of methanol from methane and water [J]. Chinese Journal of Catalysis, 2025, 70(3): 311-321. |
[2] | Jiayi Cui, Xintao Yu, Xueyao Li, Jianmin Yu, Lishan Peng, Zidong Wei. Advances in spin regulation of M-N-C single-atom catalysts and their applications in electrocatalysis [J]. Chinese Journal of Catalysis, 2025, 69(2): 17-34. |
[3] | Yangyang Li, Jingyi Yang, Botao Qiao, Tao Zhang. Size-dependent strong metal-support interaction modulation of Pt/CoFe2O4 catalysts [J]. Chinese Journal of Catalysis, 2025, 69(2): 292-302. |
[4] | Hao Dai, Tao Song, Xian Yue, Shuting Wei, Fuzhi Li, Yanchao Xu, Siyan Shu, Ziang Cui, Cheng Wang, Jun Gu, Lele Duan. Cu single-atom electrocatalyst on nitrogen-containing graphdiyne for CO2 electroreduction to CH4 [J]. Chinese Journal of Catalysis, 2024, 64(9): 123-132. |
[5] | Jialin Wang, Kaini Zhang, Ta Thi Thuy Nga, Yiqing Wang, Yuchuan Shi, Daixing Wei, Chung-Li Dong, Shaohua Shen. Chalcogen heteroatoms doped nickel-nitrogen-carbon single-atom catalysts with asymmetric coordination for efficient electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 64(9): 54-65. |
[6] | Chengguang Lang, Yantong Xu, Xiangdong Yao. Perfecting HER catalysts via defects: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2024, 64(9): 4-31. |
[7] | Kaining Li, Yasutaka Kuwahara, Hiromi Yamashita. Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO2 electroreduction [J]. Chinese Journal of Catalysis, 2024, 64(9): 66-76. |
[8] | Jing Yan, Jiaqi Ni, Hongli Sun, Chenliang Su, Bin Liu. Progress in tracking electrochemical CO2 reduction intermediates over single-atom catalysts using operando ATR-SEIRAS [J]. Chinese Journal of Catalysis, 2024, 62(7): 32-52. |
[9] | Xiaomin Ren, Huicong Dai, Xin Liu, Qihua Yang. Development of efficient catalysts for selective hydrogenation through multi-site division [J]. Chinese Journal of Catalysis, 2024, 62(7): 108-123. |
[10] | Zhounan Yu, Leilei Zhang, Yuanlong Tan, Rizheng Jing, Hongchen Cao, Caiyi Lou, Rile Ge, Junhu Wang, Aiqin Wang, Tao Zhang. PS-PPh2 tethered Pt single atoms promoted by SnCl2 as highly efficient and regio-selective catalysts for the hydroformylation of higher α-alkenes [J]. Chinese Journal of Catalysis, 2024, 60(5): 316-326. |
[11] | Mu-Lin Li, Yi-Meng Xie, Jingting Song, Ji Yang, Jin-Chao Dong, Jian-Feng Li. Ammonia electrosynthesis on carbon-supported metal single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 60(5): 42-67. |
[12] | Ning Song, Jizhou Jiang, Shihuan Hong, Yun Wang, Chunmei Li, Hongjun Dong. State-of-the-art advancements in single atom electrocatalysts originating from MOFs for electrochemical energy conversion [J]. Chinese Journal of Catalysis, 2024, 59(4): 38-81. |
[13] | De-Gui Wu, Xiao-Gen Xiong, Zhong-Dong Zhao, Shu-Qin Song, Zhao-Bin Ding. Unravelling ligand topology effect on the binding of oxygen reduction reaction intermediates on Fe-Nx-C single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 59(4): 214-224. |
[14] | Junlei Zhang, Wencong Liu, Biao Liu, Xiaoguang Duan, Zhimin Ao, Mingshan Zhu. Is single-atom catalyzed peroxymonosulfate activation better? Coupling with metal oxide may be better [J]. Chinese Journal of Catalysis, 2024, 59(4): 137-148. |
[15] | Qian Zhang, Xunzhu Jiang, Yang Su, Yang Zhao, Botao Qiao. Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 57(2): 105-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||