Chinese Journal of Catalysis ›› 2023, Vol. 52: 127-143.DOI: 10.1016/S1872-2067(23)64491-2
• Reviews • Previous Articles Next Articles
Binbin Zhaoa, Wei Zhonga, Feng Chena, Ping Wanga, Chuanbiao Bieb, Huogen Yua,b,*()
Received:
2023-05-27
Accepted:
2023-07-17
Online:
2023-09-18
Published:
2023-09-25
Contact:
*E-mail: About author:
Huogen Yu (Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences) received his PhD in 2007 from Wuhan University of Technology (WHUT). He served as a post-doctoral fellow at the University of Tokyo from 2008 to 2010. Since 2022, he has been working in Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). His research interests are mainly focused on the high-performance photocatalytic materials for water splitting and environmental purification. He is the author or co-author of more than 180 peer-reviewed papers and was selected as the Most Cited Chinese Researchers in 2014-2022, based on the Scopus database from Elsevier. He was invited as a member of the editorial board of Chin. J. Catal. Since 2021.
Supported by:
Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application[J]. Chinese Journal of Catalysis, 2023, 52: 127-143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64491-2
Fig. 2. Schematic diagram for (a) the synthesis of g-C3N4 using various precursors and (b) the polymerization pathway of traditional poor-crystalline g-C3N4 by calcining the dicyandiamide precursor.
Fig. 3. Graphic illustration for the microstructures corresponding to charge separation and transfer of traditional poor-crystalline g-C3N4 (a) and high-crystalline g-C3N4 (b).
Fig. 4. (a) XRD patterns of traditional bulk g-C3N4 nanosheets (BCNNs), traditional crystalline g-C3N4 nanosheets (CCNNs), and g-C3N4 nanosheets with an in-plane highly ordered structure (PCNNs-IHO). (b) HRTEM image of PCNNs-IHO. (a,b) Reprinted with permission from Ref. [84]. Copyright 2021, John Wiley and Sons. (c) XRD patterns of CCN0 (1), CCN0.03 (2), CCN0.1 (3), and CCN0.2 (4). (d) TEM image of CCN0.1. Reprinted with permission from Ref. [85]. Copyright 2021, John Wiley and Sons.
Photocatalyst | Precursor | Synthetic method | Synthetic temperature (°C) | Specific surface area (m2 g-1) | Ref. |
---|---|---|---|---|---|
g-CN1 | melamine | salt-assisted method (KCl/LiCl) | 550 | 125 | [ |
NDCCN | urea | salt-assisted method (Na2CO3/Li2CO3) | 550 | — | [ |
KPCN | melamine | salt-assisted method (KBr) | 580 | 10 | [ |
PC-CN0.1 | dicyandiamide | salt-assisted method (NaHCO3) | 550 | 15.34 | [ |
HC-CN0.05 | dicyandiamide | salt-assisted method (CH3COONa) | 550 | 13.6 | [ |
CNRs | cyanamide | template method (anodic alumni oxide) | 600 | 25 | [ |
HcPCN | urea | template method (poly(dimethylsiloxane)) | 550 | 93.8 | [ |
U350-670 | urea | two-step calcination method | 670 | 122.9 | [ |
HP550 | dicyandiamide | high pressure | 550 | 6.2 | [ |
Table 1 The synthesis of high-crystalline g-C3N4.
Photocatalyst | Precursor | Synthetic method | Synthetic temperature (°C) | Specific surface area (m2 g-1) | Ref. |
---|---|---|---|---|---|
g-CN1 | melamine | salt-assisted method (KCl/LiCl) | 550 | 125 | [ |
NDCCN | urea | salt-assisted method (Na2CO3/Li2CO3) | 550 | — | [ |
KPCN | melamine | salt-assisted method (KBr) | 580 | 10 | [ |
PC-CN0.1 | dicyandiamide | salt-assisted method (NaHCO3) | 550 | 15.34 | [ |
HC-CN0.05 | dicyandiamide | salt-assisted method (CH3COONa) | 550 | 13.6 | [ |
CNRs | cyanamide | template method (anodic alumni oxide) | 600 | 25 | [ |
HcPCN | urea | template method (poly(dimethylsiloxane)) | 550 | 93.8 | [ |
U350-670 | urea | two-step calcination method | 670 | 122.9 | [ |
HP550 | dicyandiamide | high pressure | 550 | 6.2 | [ |
Fig. 5. (a) XRD patterns and Gaussian fitting results of pure g-C3N4 (bulk g-CN) and (g-CN1). (b) XRD patterns of g-CN1 before and after photocatalytic H2-evolution tests. (c,d) HRTEM images of g-CN1. Reprinted with permission from Ref. [86]. Copyright 2016, American Chemical Society. PL (e) and time-resolved fluorescence decay spectra (f) of pure g-C3N4 (CN) and crystalline g-C3N4 (NDCCN). Reprinted with permission from Ref. [87]. Copyright 2019, Elsevier.
Fig. 6. (a) Schematic illustration of the synthesis of KPCN. (b) XRD patterns of PCN and KPCN. (c,d) HRTEM images of KPCN. Reprinted with permission from Ref. [55]. Copyright 2019, John Wiley and Sons.
Fig. 7. (a,b) XRD patterns of bulk g-C3N4 (1), PC-CN0 (2), PC-CN0.05 (3), PC-CN0.1 (4), and PC-CN0.2 (5). (c) TEM image of PC-CN0.1. Reprinted with permission from Ref. [49]. Copyright 2020, Elsevier. Graphic diagram for the synthesis of traditionally disordered g-C3N4 (d) and high-yield and crystalline g-C3N4 (e). Reprinted with permission from Ref. [83]. Copyright 2023, Elsevier.
Fig. 8. (a) Synthetic diagram for the synthesis of CNRs through AAO template strategy. (1) AAO template (gray) filled with cyanamide (white). (2) Heating. (3) Removal of template to obtain CNRs (yellow). Reprinted with permission from Ref. [88]. Copyright 2011, American Chemical Society. (b) HcPCN via soft-template-induced method. (c) XRD patterns of PCN and HcPCN, (d-f) HRTEM images of HcPCN (the scale bar is 2 nm). Reprinted with permission from Ref. [89]. Copyright 2021, Royal Society of Chemistry.
Fig. 9. (a) Graphic illustration of Ux-670. (b) Photographs of various samples. SEM (c), TEM (d) and HRTEM (e-g) images of U350-670. (h) XRD patterns of pure g-C3N4 (U550) and Ux-670. Reprinted with permission from Ref. [90]. Copyright 2022, Elsevier.
Fig. 10. (a) XRD patterns of pure g-C3N4 (CN550) and MCN1000-18. (b) HRTEM image of MCN1000-18. (c) XRD patterns of various g-C3N4 photocatalysts prepared using the microwave-assisted strategy with melamine (MM), cyanamide (MC), and thiourea (MT). Reprinted with permission from Ref. [103]. Copyright 2014, Royal Society of Chemistry. (d) XRD patterns of various samples. Steady-state PL spectra (e), TR-PL spectra (f), and transient photocurrent responses (g) of CN540 and CN16. Reprinted with permission from Ref. [104]. Copyright 2016, John Wiley and Sons.
Fig. 11. Schematic diagram for the synthesis of g-C3N4 under normal pressure (a) and high pressure (b). Reprinted with permission from Ref. [91]. Copyright 2018, Elsevier. Cs-corrected HRTEM (c) and the corresponding Fourier transformation images (d) of CCN. Reprinted with permission from Ref. [105]. Copyright 2019, John Wiley and Sons.
Fig. 12. (a) Synthetic illustration of S-CNNTs. (b) UV-vis spectra, and the corresponding Kubelka-Munk plots (inset). Reprinted with permission from Ref. [113]. Copyright 2022, Elsevier. (c) Graphical diagram for the synthesis of Zn-CCN. (d) Kubelka-Munk function spectra of various samples. Reprinted with permission from Ref. [114]. Copyright 2019, Elsevier. UV-vis spectra (e) and band gaps (f) calculated using the Kubelka-Munk (K-M) equation. Reprinted with permission from Ref. [116]. Copyright 2022, Elsevier.
Photocatalyst | Photocatalyst amount/ Co-catalyst | Sacrificial agent | Light source | Activity (μmol g-1 h-1) | Quantum efficiency | Ref. |
---|---|---|---|---|---|---|
PC-CN0.1 | 50 mg/1.0 wt% Pt | 10 vol% lactic acid | Four 3-W 420-nm LEDs | 1010.0 (H2) | 1.56% (420 nm) | [ |
CPCN | 50 mg/1.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ ≥ 420 nm) | 1356.0 (H2) | 11.4% (420 nm) | [ |
GCN-HC | 50 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 339.4 (H2) | 3.8% (420 nm) | [ |
CCN0.1 | 50 mg/1.0 wt% Pt | 10 vol% lactic acid | Four 3-W 420-nm lamp | 758.8 (H2) | 1.17% (420 nm) | [ |
g-CN1 | 50 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe Lamp (λ > 420 nm) | 1472.0 (H2) | 50.7% (405 nm) | [ |
CCN550 | 50 mg/3.0 wt% Pt | 10 vol% methanol | 300W Xe lamp (λ > 420 nm) | 660.0 (H2) | 6.8% (420 nm) | [ |
3DBC-C3N4-N | 25 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 10600.0 (H2) | 26% (420 nm) | [ |
MC-CN | 100 mg/3.0 wt% H2PtCl6 | 10 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 181.51 (H2) | 1.58% (420 nm) | [ |
HC-CN | 100 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe Lamp (λ > 400 nm) | 808.5 (H2) | 6.17% (420 nm) | [ |
HcPCN | 20 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ ≥ 420 nm) | 9520.0 (H2) | 11.0% (420 nm) | [ |
U350-670 | 10 mg/1.1 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 14665.0 (H2) | — | [ |
MCN1000-18 | 10 mg/0.5 wt% Pt | 15 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 2000.0 (H2) | 5.6% (420 nm) | [ |
HP550 | 50 mg/1.0 wt% Pt | 10 vol% triethanolamine | 350 W Xe lamp (λ > 420 nm) | 772.40 (H2) | 1.6% (420 nm) | [ |
KCCN2 | 50 mg/3.0 wt% Pt | 20 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 5238.0 (H2) | 25.7% (420 nm) | [ |
CCNNSs | 50 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (AM 1.5G) | 9577.6 (H2) | 9.01% (420 nm) | [ |
CC-CN6 | 50 mg/1.0 wt% Pt | 10 vol% methanol | Four 3-W 420-nm LEDs | 5906.0 (H2) | 12.61% (420 nm) | [ |
530 LOP-CN | 30 mg/3.0 % Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ ≥ 400 nm) | 1790.0 (H2) | 3.3% (420 nm) | [ |
cMel-5 | 50 mg/3.0 wt% Pt | 10 vol% triethanolamine | 200 W Xe lamp (λ ≥ 420 nm) | 6480.0 (H2) | 20.7% (420 nm) | [ |
CCNNSs | 50 mg/3.0 wt% Pt | 10 vol% methanol | Visible light (λ > 420 nm) | 1060.0 (H2) | 8.57% (420 nm) | [ |
HCN-25 min | 50 mg/0.2 wt% Pt | 10 vol% triethanolamine | 300 W Xe Lamp (λ > 420 nm) | 1631.6 (H2) | 2.1 % (420 nm) | [ |
MTCN-6 | 40 mg/1.0 wt% Pt | 20 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 1511.2 (H2) | 3.9% (420 nm) | [ |
PCNmp-30 | 10 mg/0.5 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ ≥ 420 nm) | 6170.0 (H2) | 1.47% (420 nm) | [ |
15% ReS2/CCN | 20 mg/3.0 wt% H2PtCl6·6H2O | 10 vol% triethanolamine | 300 W Xe lamp | 3460.0 (H2) | 1.26% (420 nm) | [ |
HCN/Ti3C2 (HCNT20) | 20 mg/1.0 wt% Pt | 10 vol% triethanolamine | Four 3-W 420-nm LEDs | 4225.0 (H2) | 14.6% (420 nm) | [ |
CCN/LaOCl-1.5 | 50 mg/0.5 wt% Pt/ 0.2 wt% CoOX | — | 300 W Xe lamp (λ > 300 nm) | 1212.0 (H2) 562.0 (O2) | 1.13% (400 nm) | [ |
g-C3N4-D2 | 20 mg/1.0 wt% Pt/ 3.0 wt% Co3O4 | — | 300 W Xe lamp (AM1.5G) | 49.60 (H2) 24.71 (O2) | — | [ |
Table 2 Photocatalytic H2-evolution activity of high-crystalline g-C3N4.
Photocatalyst | Photocatalyst amount/ Co-catalyst | Sacrificial agent | Light source | Activity (μmol g-1 h-1) | Quantum efficiency | Ref. |
---|---|---|---|---|---|---|
PC-CN0.1 | 50 mg/1.0 wt% Pt | 10 vol% lactic acid | Four 3-W 420-nm LEDs | 1010.0 (H2) | 1.56% (420 nm) | [ |
CPCN | 50 mg/1.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ ≥ 420 nm) | 1356.0 (H2) | 11.4% (420 nm) | [ |
GCN-HC | 50 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 339.4 (H2) | 3.8% (420 nm) | [ |
CCN0.1 | 50 mg/1.0 wt% Pt | 10 vol% lactic acid | Four 3-W 420-nm lamp | 758.8 (H2) | 1.17% (420 nm) | [ |
g-CN1 | 50 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe Lamp (λ > 420 nm) | 1472.0 (H2) | 50.7% (405 nm) | [ |
CCN550 | 50 mg/3.0 wt% Pt | 10 vol% methanol | 300W Xe lamp (λ > 420 nm) | 660.0 (H2) | 6.8% (420 nm) | [ |
3DBC-C3N4-N | 25 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 10600.0 (H2) | 26% (420 nm) | [ |
MC-CN | 100 mg/3.0 wt% H2PtCl6 | 10 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 181.51 (H2) | 1.58% (420 nm) | [ |
HC-CN | 100 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe Lamp (λ > 400 nm) | 808.5 (H2) | 6.17% (420 nm) | [ |
HcPCN | 20 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ ≥ 420 nm) | 9520.0 (H2) | 11.0% (420 nm) | [ |
U350-670 | 10 mg/1.1 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 14665.0 (H2) | — | [ |
MCN1000-18 | 10 mg/0.5 wt% Pt | 15 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 2000.0 (H2) | 5.6% (420 nm) | [ |
HP550 | 50 mg/1.0 wt% Pt | 10 vol% triethanolamine | 350 W Xe lamp (λ > 420 nm) | 772.40 (H2) | 1.6% (420 nm) | [ |
KCCN2 | 50 mg/3.0 wt% Pt | 20 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 5238.0 (H2) | 25.7% (420 nm) | [ |
CCNNSs | 50 mg/3.0 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (AM 1.5G) | 9577.6 (H2) | 9.01% (420 nm) | [ |
CC-CN6 | 50 mg/1.0 wt% Pt | 10 vol% methanol | Four 3-W 420-nm LEDs | 5906.0 (H2) | 12.61% (420 nm) | [ |
530 LOP-CN | 30 mg/3.0 % Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ ≥ 400 nm) | 1790.0 (H2) | 3.3% (420 nm) | [ |
cMel-5 | 50 mg/3.0 wt% Pt | 10 vol% triethanolamine | 200 W Xe lamp (λ ≥ 420 nm) | 6480.0 (H2) | 20.7% (420 nm) | [ |
CCNNSs | 50 mg/3.0 wt% Pt | 10 vol% methanol | Visible light (λ > 420 nm) | 1060.0 (H2) | 8.57% (420 nm) | [ |
HCN-25 min | 50 mg/0.2 wt% Pt | 10 vol% triethanolamine | 300 W Xe Lamp (λ > 420 nm) | 1631.6 (H2) | 2.1 % (420 nm) | [ |
MTCN-6 | 40 mg/1.0 wt% Pt | 20 vol% triethanolamine | 300 W Xe lamp (λ > 420 nm) | 1511.2 (H2) | 3.9% (420 nm) | [ |
PCNmp-30 | 10 mg/0.5 wt% Pt | 10 vol% triethanolamine | 300 W Xe lamp (λ ≥ 420 nm) | 6170.0 (H2) | 1.47% (420 nm) | [ |
15% ReS2/CCN | 20 mg/3.0 wt% H2PtCl6·6H2O | 10 vol% triethanolamine | 300 W Xe lamp | 3460.0 (H2) | 1.26% (420 nm) | [ |
HCN/Ti3C2 (HCNT20) | 20 mg/1.0 wt% Pt | 10 vol% triethanolamine | Four 3-W 420-nm LEDs | 4225.0 (H2) | 14.6% (420 nm) | [ |
CCN/LaOCl-1.5 | 50 mg/0.5 wt% Pt/ 0.2 wt% CoOX | — | 300 W Xe lamp (λ > 300 nm) | 1212.0 (H2) 562.0 (O2) | 1.13% (400 nm) | [ |
g-C3N4-D2 | 20 mg/1.0 wt% Pt/ 3.0 wt% Co3O4 | — | 300 W Xe lamp (AM1.5G) | 49.60 (H2) 24.71 (O2) | — | [ |
|
[1] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[2] | Jing Shi, Yu-Hua Guo, Fei Xie, Ming-Tian Zhang, Hong-Tao Zhang. Electronic effects of redox-active ligands on ruthenium-catalyzed water oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 271-279. |
[3] | Yong Liu, Xiaoli Zhao, Chang Long, Xiaoyan Wang, Bangwei Deng, Kanglu Li, Yanjuan Sun, Fan Dong. In situ constructed dynamic Cu/Ce(OH)x interface for nitrate reduction to ammonia with high activity, selectivity and stability [J]. Chinese Journal of Catalysis, 2023, 52(9): 196-206. |
[4] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[5] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[6] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[7] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[8] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[9] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[10] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[11] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[12] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[13] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[14] | Ling Ouyang, Jie Liang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun, Binwu Ying. Recent advances in electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2023, 50(7): 6-44. |
[15] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||