Chinese Journal of Catalysis ›› 2024, Vol. 60: 128-157.DOI: 10.1016/S1872-2067(24)60016-1
• Reviews • Previous Articles Next Articles
Chang’an Wanga, Ying Ouyangb, Yibin Luob,*(), Xinru Gaoa, Hongyi Gaoa,c,*(
), Ge Wanga,d,*(
), Xingtian Shub,*(
)
Received:
2024-01-16
Accepted:
2024-02-27
Online:
2024-05-18
Published:
2024-05-20
Contact:
E-mail: About author:
Yibin Luo is a professor at Research Institute of Petroleum Processing, SINOPEC. Dr. Luo has more than 30 yr of experience on zeolite synthesis and industrial applications in both petroleum refining and chemical production. He led the team to develop various series of zeolites, which were formulated into nearly 200,000 tons/year of catalysts used in catalytic cracking units. He has been granted 46 Chinese invention patents and published more than 30 peer‐reviewed papers.Supported by:
Chang’an Wang, Ying Ouyang, Yibin Luo, Xinru Gao, Hongyi Gao, Ge Wang, Xingtian Shu. Review on recent advances in phase change materials for enhancing the catalytic process[J]. Chinese Journal of Catalysis, 2024, 60: 128-157.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60016-1
PCMs@ Catalysts | Synthesis method | Shell layer | PCMs core | Catalyst | Melting/ Freezing enthalpy (J/g) | Melting/ Crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ni/Al2O3/NaCl Ni/ZrO2/ Na2CO3 | impregnation method + melt impregnation method | Ni + Al2O3 Ni + ZrO2 | NaCl Na2CO3 | Ni | —/220 | — | — | solar thermochemical reforming of methane | [67] |
Ni/MEPCM | boehmite treatment + precipitation treatment + thermal oxidation treatment | NiO + α-Al2O3 | Al-Si | NiO | 177.84/— | 573.43/— | — | CO2 methanation | [71] |
(Fe2O3/Al2O3)/ (Al@Al2O3) | thermal oxidation + gelation method | Fe2O3/Al2O3 | Al@Al2O3 | Fe2O3 | ~180/~185 | ~660/~610 | — | unsteady-state chemical reaction | [73] |
Co3O4/ (SiAl@Al2O3) | induced oxidation method+ Co-precipitation method | Co3O4 + α-Al2O3 | Al-Si | Co3O4 | ~100/~80 | 577/550 | — | methane combustion | [45] |
Al@Al2O3-C | induced oxidation method + in-situ decomposition method | Al2O3 + Ni + C | Al | — | 267.6/266.3 | 660.3/628.3 | — | high-temperature catalysis industry | [61] |
α-Al2O3@Al-Si | boehmite treatment + thermal oxidation method | α-Al2O3 | Al-Si | — | 247/— | 573/— | 57 | S-IGFC, A-IGCC and A-IGFC | [60] |
MEPCMs | ultrasonic polymerization + self-assembly method + solution combustion synthesis | CaCO3-PMMA | Sn | Ce, Mn | 56.31/51.21 | 231.8/154.8 | 77.3 | industrial denitrification/desulphurisation | [59] |
SiO2/poly(EGDMA-co-MAA)@n-eicosane | emulsion-template interfacial condensation method + surface free-radical polymerization | SiO2 + poly(EGDMA-co-MAA) | n-eicosane | recognition sites | 165.3/164.1 | ~37/~29 | 63.4 | adsorption of BPA | [81] |
Pt/ SiO2 In@SiO2 paraffin@SiO2 | sol-gel method + impregnation method | SiO2 | In or paraffin | Pt | 160 (Encapsulated paraffin)/ —— | — | ~80 (encapsulated paraffin) | methanol oxidation, MMA polymerization | [30] |
SiO2@n-octadecane | sol-gel method | SiO2 | n-octadecane | — | 129.1/121.3 | 27.23/24.37 | 54.5 | esterification of propionic anhydride and n-butanol | [82] |
Table 1 Synthetic methods, microphysical properties and applied reactions of PCMs@Catalysts in thermal catalysis fields.
PCMs@ Catalysts | Synthesis method | Shell layer | PCMs core | Catalyst | Melting/ Freezing enthalpy (J/g) | Melting/ Crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ni/Al2O3/NaCl Ni/ZrO2/ Na2CO3 | impregnation method + melt impregnation method | Ni + Al2O3 Ni + ZrO2 | NaCl Na2CO3 | Ni | —/220 | — | — | solar thermochemical reforming of methane | [67] |
Ni/MEPCM | boehmite treatment + precipitation treatment + thermal oxidation treatment | NiO + α-Al2O3 | Al-Si | NiO | 177.84/— | 573.43/— | — | CO2 methanation | [71] |
(Fe2O3/Al2O3)/ (Al@Al2O3) | thermal oxidation + gelation method | Fe2O3/Al2O3 | Al@Al2O3 | Fe2O3 | ~180/~185 | ~660/~610 | — | unsteady-state chemical reaction | [73] |
Co3O4/ (SiAl@Al2O3) | induced oxidation method+ Co-precipitation method | Co3O4 + α-Al2O3 | Al-Si | Co3O4 | ~100/~80 | 577/550 | — | methane combustion | [45] |
Al@Al2O3-C | induced oxidation method + in-situ decomposition method | Al2O3 + Ni + C | Al | — | 267.6/266.3 | 660.3/628.3 | — | high-temperature catalysis industry | [61] |
α-Al2O3@Al-Si | boehmite treatment + thermal oxidation method | α-Al2O3 | Al-Si | — | 247/— | 573/— | 57 | S-IGFC, A-IGCC and A-IGFC | [60] |
MEPCMs | ultrasonic polymerization + self-assembly method + solution combustion synthesis | CaCO3-PMMA | Sn | Ce, Mn | 56.31/51.21 | 231.8/154.8 | 77.3 | industrial denitrification/desulphurisation | [59] |
SiO2/poly(EGDMA-co-MAA)@n-eicosane | emulsion-template interfacial condensation method + surface free-radical polymerization | SiO2 + poly(EGDMA-co-MAA) | n-eicosane | recognition sites | 165.3/164.1 | ~37/~29 | 63.4 | adsorption of BPA | [81] |
Pt/ SiO2 In@SiO2 paraffin@SiO2 | sol-gel method + impregnation method | SiO2 | In or paraffin | Pt | 160 (Encapsulated paraffin)/ —— | — | ~80 (encapsulated paraffin) | methanol oxidation, MMA polymerization | [30] |
SiO2@n-octadecane | sol-gel method | SiO2 | n-octadecane | — | 129.1/121.3 | 27.23/24.37 | 54.5 | esterification of propionic anhydride and n-butanol | [82] |
Fig. 5. (A) Mechanism of in-situ temperature regulation in catalyst-loaded MEPCMs. (B) Temperature programs of the Ni/MEPCM catalyst with/without the heat storage function during the CO2 methanation reaction. Reprinted with permission from Ref. [71]. Copyright 2021, Springer Nature.
Fig. 6. (A) Synthesis schematic of (Fe2O3/Al2O3)/(Al@Al2O3) OCs. (B) Application of thermal storage functional catalysts for chemical energy. Reprinted with permission from Ref. [73]. Copyright 2017, Royal Society of Chemistry. (C) The preparation of the encapsulated Co3O4/(SiAl@Al2O3) thermal storage functional catalysts. Reprinted with permission from Ref. [45]. Copyright 2020, Elsevier Ltd. (D) The process of the carbon formation on the surface of Al@Al2O3 from CH4 decomposition. Reprinted with permission from Ref. [61]. Copyright 2019, Elsevier B.V.
Fig. 7. (A) The transformation of boehmite shell during thermal oxidation treatment. (B) Expected applications of MEPCMs in S-IGFC, A-IGCC and A-IGFC. Reprinted with permission from Ref. [60]. Copyright 2015, Springer Nature.
PCMs@Catalysts | Synthesis method | Shell layer | PCM core | Catalyst | Melting/ freezing enthalpy (J/g) | Melting/ Crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ag-Paraffin @Halloysite | self-assembly method | Ag + Halloysite | paraffin | Ag | 150.58/ 136.42 | 61.82/57.93 | 87.4 | 4-nitrophenol reduction | [ |
TiO2/poly(4-MeS-co-DVB)@hexadecane | one-pot non-Pickering emulsion templated suspension polymerization method | TiO2 + [poly(4- ethylstyrene-co- divinylbenzene)] | hexadecane | TiO2 | 182.0±3/ 174.0±3 | 17.5±0.3/ — | 76.6 | methylene blue degradation | [ |
TiO2@ n-eicosane | sol-gel method + in-situ polycondensation | TiO2 | n-eicosane | TiO2 | 97.6/ 95.33 | 43.88/35.39 | 49.9 | methylene blue degradation | [ |
n-eicosane@ TiO2@graphene | interfacial polycondensation + surface self-assembly | graphene + TiO2 | paraffin | TiO2 | ~162/ ~160 | ~40/~33 | 65.59 | methyl blue degradation | [ |
ZnO@n-eicosane | in-situ precipitation method | ZnO | n-eicosane | ZnO | 50‒135/ 28‒133 | 38~40/ 29~31 | 35~70 | methylene blue degradation | [ |
ZnO/SiO2@ n-docosane | emulsion-templated interfacial condensation + structure-induced growth method | ZnO + SiO2 | n-docosane | ZnO | 139/~137 | ~44/~35 | ~60 | — | [ |
TiO2/poly(HDDA)@paraffin | microfluidic emulsification + on-the-fly photopolymerization | poly(1,6-hexanediol diacrylate) + TiO2 | paraffin | TiO2 | — | — | — | methylene blue degradation | [ |
paraffin@SiO2/ FeOOH | interfacial condensation method | FeOOH + SiO2 | paraffin | FeOOH | 104.44/ 101.69 | 26.1/25.49 | 49.68 | methylene blue degradation | [ |
TiO2@SnBi58 | ultrasonic polymerization + liquid-phase precipitation method | TiO2 | SnBi58 | TiO2 | 46.61/ 37.57 | 137.6/132.1 | — | methylene blue degradation | [ |
TiO2-polyurethane@butyl stearate | interfacial polymerization method | TiO2-polyurethane | butyl stearate | TiO2 | 16.75/— | 26/— | — | MO degradation | [ |
Cu2O@n-eicosane | emulsion template self-assembly method + in-situ precipitation | Cu2O | n-eicosane | Cu2O | 165.3/ 163.1 | 38.71/32.52 | 61.61 | degradation of malachite green, acid fuchsin, Congo red | [ |
SiO2/TiO2/PDA@n-eicosane | interfacial polycondensation method + sol-gel method | SiO2/TiO2/PDA | n-eicosane | TiO2 | ~125/ ~125 | ~43/~35 | — | RhB degradation | [ |
n-eicosane/TiO2-based microcapsules | emulsion-templated interfacial polycondensation method | TiO2 | n-eicosane | TiO2 | ~185/ ~180 | ~41.8/~30 | 75.9 | RhB degradation | [ |
PDVB/TiO2@ paraffin | pickering emulsion polymerization method | TiO2 + PDVB | paraffin | TiO2 | 139.1/ 140.8 | 26.6/23.5 | 78.9 | HCHO decomposition | [ |
D-P@Ce-Eu/ TiO2 | interfacial condensation + vacuum impregnation | Ce-Eu/TiO2 | DA-PA | Ce-Eu/ TiO2 | — | — | — | HCHO decomposition | [ |
PA-DA@ Ce-Eu/TiO2 | interfacial condensation + vacuum impregnation method | Ce-Eu/TiO2 | PA-DA | Ce-Eu/ TiO2 | 64.6/59.1 | 27.54/17.12 | — | HCHO decomposition | [ |
C18@titania | aerosol process + hydro thermal post-treatment | TiO2 | n- octadecane | TiO2 | 97/92 | 28.7/21 | — | CH3SH decomposition | [ |
Table 2 Synthetic methods, microphysical properties and applied reactions of PCMs@Catalysts in photocatalysis fields.
PCMs@Catalysts | Synthesis method | Shell layer | PCM core | Catalyst | Melting/ freezing enthalpy (J/g) | Melting/ Crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ag-Paraffin @Halloysite | self-assembly method | Ag + Halloysite | paraffin | Ag | 150.58/ 136.42 | 61.82/57.93 | 87.4 | 4-nitrophenol reduction | [ |
TiO2/poly(4-MeS-co-DVB)@hexadecane | one-pot non-Pickering emulsion templated suspension polymerization method | TiO2 + [poly(4- ethylstyrene-co- divinylbenzene)] | hexadecane | TiO2 | 182.0±3/ 174.0±3 | 17.5±0.3/ — | 76.6 | methylene blue degradation | [ |
TiO2@ n-eicosane | sol-gel method + in-situ polycondensation | TiO2 | n-eicosane | TiO2 | 97.6/ 95.33 | 43.88/35.39 | 49.9 | methylene blue degradation | [ |
n-eicosane@ TiO2@graphene | interfacial polycondensation + surface self-assembly | graphene + TiO2 | paraffin | TiO2 | ~162/ ~160 | ~40/~33 | 65.59 | methyl blue degradation | [ |
ZnO@n-eicosane | in-situ precipitation method | ZnO | n-eicosane | ZnO | 50‒135/ 28‒133 | 38~40/ 29~31 | 35~70 | methylene blue degradation | [ |
ZnO/SiO2@ n-docosane | emulsion-templated interfacial condensation + structure-induced growth method | ZnO + SiO2 | n-docosane | ZnO | 139/~137 | ~44/~35 | ~60 | — | [ |
TiO2/poly(HDDA)@paraffin | microfluidic emulsification + on-the-fly photopolymerization | poly(1,6-hexanediol diacrylate) + TiO2 | paraffin | TiO2 | — | — | — | methylene blue degradation | [ |
paraffin@SiO2/ FeOOH | interfacial condensation method | FeOOH + SiO2 | paraffin | FeOOH | 104.44/ 101.69 | 26.1/25.49 | 49.68 | methylene blue degradation | [ |
TiO2@SnBi58 | ultrasonic polymerization + liquid-phase precipitation method | TiO2 | SnBi58 | TiO2 | 46.61/ 37.57 | 137.6/132.1 | — | methylene blue degradation | [ |
TiO2-polyurethane@butyl stearate | interfacial polymerization method | TiO2-polyurethane | butyl stearate | TiO2 | 16.75/— | 26/— | — | MO degradation | [ |
Cu2O@n-eicosane | emulsion template self-assembly method + in-situ precipitation | Cu2O | n-eicosane | Cu2O | 165.3/ 163.1 | 38.71/32.52 | 61.61 | degradation of malachite green, acid fuchsin, Congo red | [ |
SiO2/TiO2/PDA@n-eicosane | interfacial polycondensation method + sol-gel method | SiO2/TiO2/PDA | n-eicosane | TiO2 | ~125/ ~125 | ~43/~35 | — | RhB degradation | [ |
n-eicosane/TiO2-based microcapsules | emulsion-templated interfacial polycondensation method | TiO2 | n-eicosane | TiO2 | ~185/ ~180 | ~41.8/~30 | 75.9 | RhB degradation | [ |
PDVB/TiO2@ paraffin | pickering emulsion polymerization method | TiO2 + PDVB | paraffin | TiO2 | 139.1/ 140.8 | 26.6/23.5 | 78.9 | HCHO decomposition | [ |
D-P@Ce-Eu/ TiO2 | interfacial condensation + vacuum impregnation | Ce-Eu/TiO2 | DA-PA | Ce-Eu/ TiO2 | — | — | — | HCHO decomposition | [ |
PA-DA@ Ce-Eu/TiO2 | interfacial condensation + vacuum impregnation method | Ce-Eu/TiO2 | PA-DA | Ce-Eu/ TiO2 | 64.6/59.1 | 27.54/17.12 | — | HCHO decomposition | [ |
C18@titania | aerosol process + hydro thermal post-treatment | TiO2 | n- octadecane | TiO2 | 97/92 | 28.7/21 | — | CH3SH decomposition | [ |
Fig. 9. (A) Schematic illustration of Ag-Paraffin@Halloysite. (B) Catalytic mechanism of Ag-Paraffin@Halloysite before and after radiation. (C) UV-vis absorbance of 4-nitrophenol using Ag-Paraffin@Halloysite catalyst after radiation. Reprinted with permission from Ref. [44]. Copyright 2018, Elsevier Ltd.
Fig. 10. (A) Synthetic routine of graphene@TiO2@n-eicosane microcapsules. (B) Infrared thermographic images of graphene@TiO2@n-eicosane microcapsules containing (SP1) 0 wt%, (SP2) 1 wt%, (SP3) 3 wt% and (SP4) 5 wt% graphene nanosheets during heating process. (C) UV-visible absorptance spectra and digital photos of MB by n-eicosane@TiO2@graphene microcapsules containing 5 wt% graphene nanosheets. (D) Plots of degradation rate as a function of irradiation time for different samples. Reprinted with permission from Ref. [54]. Copyright 2017, American Chemical Society.
Fig. 11. (A) Synthetic strategy of the multifunctional PCMs@Catalysts. (B) The survival rates of Escherichia coli and Staphylococcus aureus with contact time catalyzed by PCMs@Catalysts. (C) UV-visible absorptance spectra of the MB solution catalyzed by PCMs@Catalysts under different UV illumination times. Reprinted with permission from Ref. [31]. Copyright 2015, Elsevier Ltd.
Fig. 12. (A) Preparation process and reaction mechanism of bifunctional microcapsules. (B) Relationship plots between temperature and time for pure n-eicosane and microcapsule samples in photothermal conversion tests. (C) Degrees of degradation with illumination time for different organic dyes. (D) UV-visible absorptance spectra and digital photos of organic dyes catalyzed by microcapsules with sunlight illumination time. Reprinted with permission from Ref. [49]. Copyright 2017, Elsevier B.V.
Fig. 13. Synthetic mechanism (A) and TEM images (B) of the n-eicosane/TiO2-based microcapsules with different morphologies. (C) UV-visible spectra of Rhodamine B using the tubular microcapsules catalysts during the photodegradation process. (D) Curves of degradation rate with illumination time catalyzed by microencapsulated samples. Reprinted with permission from Ref. [93]. Copyright 2019, Elsevier Ltd.
Fig. 14. (A) Fabricated process of PA-DA@Ce-Eu/TiO2 microspheres. (B) Photocatalytic mechanism for HCHO of PA-DA@Ce-Eu/TiO2 microspheres. (C) Degradation rate of HCHO for different microspheres. Reprinted with permission from Ref. [95]. Copyright 2020, John Wiley & Sons, Inc.
PCMs@ Catalysts | Synthesis method | Shell layer | PCM core | Active component | Melting/ freezing enthalpy (J/g) | Melting/crystalli zation temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
MEPCM- PANI/PR | emulsion-templated interfacial condensation + in-situ oxidation polymerization | PANI/PR/ SiO2 | n-docosane | PANI | ~120/~120 | ~45/~34 | 50.2 | supercapacitors | [ |
MnO2/SiO2@ n-docosane | interfacial condensation + template-directed self-assembly method | MnO2/ SiO2 | n-docosane | MnO2 | ~175/~170 | ~46/~35 | 63.1 | [ | |
Ni(OH)2-SiO2-MEPCM | emulsion-templated interfacial condensation + structure-directed interfacial precipitation | Ni(OH)2- SiO2 | n-docosane | Ni(OH)2 | 140.52/139.1 | 48.56/31.29 | 59.97 | [ | |
MEPCM- PANi/CNTs | emulsion-templated interfacial polycondensation + in-situ oxidative polymerization | PANi/ CNTs/SiO2 | n-docosane | PANi/CNTs | 142.7/143.2 | 45.6/34.2 | 61.2 | [ | |
CNF/GP/ MPCMs | in-situ polymerization + one-pot electrochemical co-deposition method | melamine resin | n- octadecane | PANi/CNF | 201.63/199.54 | ~30/~10 | 81.18 | [ | |
OA-PEG/ SiO2/SnO2 NEPCMs | in-situ emulsion interfacial hydrolysis + polycondensation + ionic layer adsorption | SnO2/SiO2 | oleic acid - polyethylene glycol | SnO2 | 58.79/55.49 | 3.11/2.57 | 52.12 | electrode reaction | [ |
Table 3 Synthetic methods, microphysical properties and applications of PCMs@Catalysts in electrochemistry fields.
PCMs@ Catalysts | Synthesis method | Shell layer | PCM core | Active component | Melting/ freezing enthalpy (J/g) | Melting/crystalli zation temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
MEPCM- PANI/PR | emulsion-templated interfacial condensation + in-situ oxidation polymerization | PANI/PR/ SiO2 | n-docosane | PANI | ~120/~120 | ~45/~34 | 50.2 | supercapacitors | [ |
MnO2/SiO2@ n-docosane | interfacial condensation + template-directed self-assembly method | MnO2/ SiO2 | n-docosane | MnO2 | ~175/~170 | ~46/~35 | 63.1 | [ | |
Ni(OH)2-SiO2-MEPCM | emulsion-templated interfacial condensation + structure-directed interfacial precipitation | Ni(OH)2- SiO2 | n-docosane | Ni(OH)2 | 140.52/139.1 | 48.56/31.29 | 59.97 | [ | |
MEPCM- PANi/CNTs | emulsion-templated interfacial polycondensation + in-situ oxidative polymerization | PANi/ CNTs/SiO2 | n-docosane | PANi/CNTs | 142.7/143.2 | 45.6/34.2 | 61.2 | [ | |
CNF/GP/ MPCMs | in-situ polymerization + one-pot electrochemical co-deposition method | melamine resin | n- octadecane | PANi/CNF | 201.63/199.54 | ~30/~10 | 81.18 | [ | |
OA-PEG/ SiO2/SnO2 NEPCMs | in-situ emulsion interfacial hydrolysis + polycondensation + ionic layer adsorption | SnO2/SiO2 | oleic acid - polyethylene glycol | SnO2 | 58.79/55.49 | 3.11/2.57 | 52.12 | electrode reaction | [ |
Fig. 15. (A) Synthesis mechanism of n-docosane PCMs-containing microcapsules with nanoflake-like MnO2/SiO2 shell. (B) CV curves of MEPCM-PANI/PR at different working temperatures with a scanning rate of 100 mV/s. (C) Curves of capacitance retention with cycle number for MEPCMs at 45 °C with a current density of 2.0 A/g. Reprinted with permission from Ref. [35]. Copyright 2018, Elsevier Ltd.
Fig. 16. Schematic synthetic route and reaction mechanism of Ni(OH)2-SiO2-MEPCM (A) and MEPCM-PANi/CNTs (D). SEM images of Ni(OH)2-SiO2-MEPCM (B) and MEPCM-PANi/CNTs (E). CV curves of Ni(OH)2-SiO2-MEPCM (C) and MEPCM-PANi/CNTs (F). Reprinted with permission from Ref. [16] (Figs. 16(A)?(C)). Copyright 2020, Elsevier B.V. Reprinted with permission from Ref. [101] (Figs. 16(D)?(F)). Copyright 2019, Elsevier Ltd.
PCMs@ Catalysts | Synthesis method | Shell layer | PCM core | Catalyst | Melting/ freezing enthalpy (J/g) | Melting/ crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ag/SiO2@ n-eicosane | interfacial condensation + silver reduction method | Ag/SiO2 | n-eicosane | Ag | ~155/ ~153 | ~40/~32.5 | 67 | inactivation of Staphylococcus aureus and Bacillus subtilis | [ |
Ag/SiO2-MicroPCMs | photocurable pickering emulsion polymerization + silver reduction method | Ag/SiO2-PMMA | n- octadecane | Ag | 110.76/ ~110 | ~25/~14 | — | inactivation of staphylococcus aureus | [ |
α-amylase/Fe3O4/SiO2@n-docosane | pickering emulsion-templated suspension polymerization | α-amylase /Fe3O4/SiO2 | n-docosane | α- amylase | 157.6/ 156.3 | 44.9/35.2 | 58 | starch decomposition | [ |
CRL/TiO2/Fe3O4@n-eicosane | pickering emulsion templating self-assembly + interfacial polycondensation | CRL/TiO2 /Fe3O4 | n-eicosane | CRL | 138.3/ 137.6 | 38.6/32.4 | 51.36 | hydrolysis of olive oil | [ |
Pen X-CS@SiO2-MEPCM | emulsion-templated interfacial poly-condensation | Pen X/CS/SiO2 | n-docosane | Pen X | 127.2/ 125.2 | 44.5/35.1 | 54.7 | hydrolysis of penicillin | [ |
LA-Au/ PDA@SiO2- MEPCM | surfactant-assisted self-assembly + in-situ reduction + immobilized copper chelate method | LA-Au/PDA @SiO2 | n-docosane | LA | ~120/ ~120 | ~45/~35 | 51.5 | ABTS oxidation | [ |
ZIF-8@PPy- SiO2-MEPCM | emulsion-templated interfacial condensation + oxidative polymerization reaction | ZIF-8@ PPy-SiO2 | n-docosane | LA+ ZIF-8 | >120/>120 | ~45/~34 | >51 | dopamine detection | [ |
HRP@PPy- TiO2-MEPCM | emulsion-templated interfacial condensation + oxidative polymerization reaction + physical adsorption | HRP@ PPy-TiO2 | n-eicosane | HRP | ~115/~115 | ~37/~26 | >51 | catechol detection | [ |
Tyr-Fe3O4/PPy@TiO2@n-C20 MEPCM | emulsion-templated interfacial polycondensation + surfactant-assisted self-assembly + oxidation polymerization | Tyr/Fe3O4/ PPy/TiO2 | n-eicosane | tyrosinase | 153.1/149.0 | 37.85/28.28 | 71.90 | catechol detection | [ |
Table 4 Synthetic methods, microphysical properties and applied reactions of PCMs@Catalysts in biocatalysis fields.
PCMs@ Catalysts | Synthesis method | Shell layer | PCM core | Catalyst | Melting/ freezing enthalpy (J/g) | Melting/ crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ag/SiO2@ n-eicosane | interfacial condensation + silver reduction method | Ag/SiO2 | n-eicosane | Ag | ~155/ ~153 | ~40/~32.5 | 67 | inactivation of Staphylococcus aureus and Bacillus subtilis | [ |
Ag/SiO2-MicroPCMs | photocurable pickering emulsion polymerization + silver reduction method | Ag/SiO2-PMMA | n- octadecane | Ag | 110.76/ ~110 | ~25/~14 | — | inactivation of staphylococcus aureus | [ |
α-amylase/Fe3O4/SiO2@n-docosane | pickering emulsion-templated suspension polymerization | α-amylase /Fe3O4/SiO2 | n-docosane | α- amylase | 157.6/ 156.3 | 44.9/35.2 | 58 | starch decomposition | [ |
CRL/TiO2/Fe3O4@n-eicosane | pickering emulsion templating self-assembly + interfacial polycondensation | CRL/TiO2 /Fe3O4 | n-eicosane | CRL | 138.3/ 137.6 | 38.6/32.4 | 51.36 | hydrolysis of olive oil | [ |
Pen X-CS@SiO2-MEPCM | emulsion-templated interfacial poly-condensation | Pen X/CS/SiO2 | n-docosane | Pen X | 127.2/ 125.2 | 44.5/35.1 | 54.7 | hydrolysis of penicillin | [ |
LA-Au/ PDA@SiO2- MEPCM | surfactant-assisted self-assembly + in-situ reduction + immobilized copper chelate method | LA-Au/PDA @SiO2 | n-docosane | LA | ~120/ ~120 | ~45/~35 | 51.5 | ABTS oxidation | [ |
ZIF-8@PPy- SiO2-MEPCM | emulsion-templated interfacial condensation + oxidative polymerization reaction | ZIF-8@ PPy-SiO2 | n-docosane | LA+ ZIF-8 | >120/>120 | ~45/~34 | >51 | dopamine detection | [ |
HRP@PPy- TiO2-MEPCM | emulsion-templated interfacial condensation + oxidative polymerization reaction + physical adsorption | HRP@ PPy-TiO2 | n-eicosane | HRP | ~115/~115 | ~37/~26 | >51 | catechol detection | [ |
Tyr-Fe3O4/PPy@TiO2@n-C20 MEPCM | emulsion-templated interfacial polycondensation + surfactant-assisted self-assembly + oxidation polymerization | Tyr/Fe3O4/ PPy/TiO2 | n-eicosane | tyrosinase | 153.1/149.0 | 37.85/28.28 | 71.90 | catechol detection | [ |
Fig. 17. (A) Synthetic strategy of multifunctional PCMs@Catalysts with n-eicosane as the core and Ag/SiO2 bilayer as the shell. Digital photos of the Petri dishes loading Escherichia coli (B), Staphylococcus aureus (C) and Bacillus subtilis (D) with different contact times. Reprinted with permission from Ref. [36]. Copyright 2016, Elsevier Ltd.
Fig. 18. The synthetic routine (A), SEM images (B) and high-resolution XPS spectra (C) of α-amylase-immobilized microcapsules with a Fe3O4/SiO2 hybrid shell. (D) Relative activities of different samples as a function of ambient temperature. (E) Relative activities of α-amylase-immobilized microcapsules during the cycle experiments. Reprinted with permission from Ref. [103]. Copyright 2017, American Chemical Society. The schematic pathway (F), TEM images (G) and FT-IR spectra (H) of CRL-immobilized microcapsules with a TiO2/Fe3O4 hybrid shell. (I) Relative activities of different samples with environmental temperature. (J) Magnetic hysteresis curve of CRL-immobilized microcapsules. Reprinted with permission from Ref. [37]. Copyright 2017, Elsevier Ltd.
Fig. 19. Fabrication process and formation mechanisms (A), detection mechanism for penicillin (B) and SEM micrographs of Pen X-CS@SiO2-MEPCM (C). (D) The influence of different GLA concentrations on residual activities of Pen X-CS@SiO2-MEPCM. (E) The effect of different environment temperatures on residual activities of Pen X-CS@SiO2-MEPCM, Pen X-CS@SiO2-Spheres and free Pen X. Reprinted with permission from Ref. [105]. Copyright 2022, Elsevier Ltd.
Fig. 20. (A) Fabricated method of laccase-immobilization on the surface of Au/PDA@SiO2-MEPCM carrier. EDX spectrum (B) and TEM image (C) of LA-Au/PDA@SiO2-MEPCM. (D) Relative enzyme activity of LA-Au/PDA@SiO2-MEPCM, LA-Au/PDA@SiO2-Spheres and free laccase at different operating temperatures. Reprinted with permission from Ref. [106]. Copyright 2020, Elsevier B.V.
Fig. 21. Scheme of fabrication methodologies for SiO2-MEPCM (A) and TiO2-MEPCM (B). Scheme of reaction mechanisms for ZIF-8@PPy-SiO2-MEPCM (C) and HRP@PPy-TiO2-MEPCM (D). Schematic synthesis process of electrochemical biosensors based on the ZIF-8@PPy-SiO2-MEPCM-modified electrode (E) and HRP@PPy-TiO2-MEPCM-modified electrode (F). Reprinted with permission from Ref. [38] (Figs. 21(A), (C) and (E)). Copyright 2021, American Chemical Society. Reprinted with permission from Ref. [39] (Figs. 21(B), (D) and (F)). Copyright 2021, Elsevier B.V.
|
[1] | Guangtong Hai, Zhongheng Fu, Xin Liu, Xiubing Huang. Recent progress in electrocatalytic reduction of nitrogen to ammonia [J]. Chinese Journal of Catalysis, 2024, 60(5): 107-127. |
[2] | Zehui Sun, Zhuangzhuang Lai, Yingying Zhao, Jianfu Chen, Wei Ma. Clarifying sequential electron-transfer steps in single-nanoparticle electrochemical process for identifying the intrinsic activity of electrocatalyst [J]. Chinese Journal of Catalysis, 2024, 60(5): 262-271. |
[3] | Wei-Fan Wu, Jin-Ge Fan, Zhen-Hong Zhao, Jian-Min Pan, Jing Yang, Xingbin Yan, Yi Zhan. Wonton-structured KB@Co-C3N4 as a highly active and stable oxygen catalyst in neutral electrolyte for Zinc-air battery [J]. Chinese Journal of Catalysis, 2024, 60(5): 178-189. |
[4] | Chao Feng, Yanbo Li. Self-healing mechanisms toward stable photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 158-170. |
[5] | Zhounan Yu, Leilei Zhang, Yuanlong Tan, Rizheng Jing, Hongchen Cao, Caiyi Lou, Rile Ge, Junhu Wang, Aiqin Wang, Tao Zhang. PS-PPh2 tethered Pt single atoms promoted by SnCl2 as highly efficient and regio-selective catalysts for the hydroformylation of higher α-alkenes [J]. Chinese Journal of Catalysis, 2024, 60(5): 316-326. |
[6] | Mu-Lin Li, Yi-Meng Xie, Jingting Song, Ji Yang, Jin-Chao Dong, Jian-Feng Li. Ammonia electrosynthesis on carbon-supported metal single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 60(5): 42-67. |
[7] | Wangyan Gou, Yichen Wang, Mingkai Zhang, Xiaohe Tan, Yuanyuan Ma, Yongquan Qu. A review on fundamentals for designing stable ruthenium-based catalysts for the hydrogen and oxygen evolution reactions [J]. Chinese Journal of Catalysis, 2024, 60(5): 68-106. |
[8] | Cheng Cheng, Wei Ren, Hui Zhang, Xiaoguang Duan, Shaobin Wang. Single-atom iron catalysts for peroxymonosulfate-based advanced oxidation processes: Coordination structure versus reactive species [J]. Chinese Journal of Catalysis, 2024, 59(4): 15-37. |
[9] | Wei Liao, Qian Zhou, Jin Long, Chenzhong Wu, Bin Wang, Qiong Peng, Jianxin Cao, Qingmei Wang. Vacancy engineering of carbon support strengthens the interaction with in-situ synthesized Pt nanodendrites for boosted oxygen reduction electrocatalysis [J]. Chinese Journal of Catalysis, 2024, 59(4): 260-271. |
[10] | Yifei Nie, Hongping Yan, Suwei Lu, Hongwei Zhang, Tingting Qi, Shijing Liang, Lilong Jiang. Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction [J]. Chinese Journal of Catalysis, 2024, 59(4): 293-302. |
[11] | Ning Song, Jizhou Jiang, Shihuan Hong, Yun Wang, Chunmei Li, Hongjun Dong. State-of-the-art advancements in single atom electrocatalysts originating from MOFs for electrochemical energy conversion [J]. Chinese Journal of Catalysis, 2024, 59(4): 38-81. |
[12] | Xingju Li, Zheng Li, Siquan Feng, Xiangen Song, Li Yan, Jiali Mu, Qiao Yuan, Lili Ning, Weimiao Chen, Zhongkang Han, Yunjie Ding. Promotional role of Ag1 on Pd1 in dual-site configurations from atomic dispersion of alloy nanoparticles for alkyne dialkoxycarbonylation [J]. Chinese Journal of Catalysis, 2024, 59(4): 282-292. |
[13] | De-Gui Wu, Xiao-Gen Xiong, Zhong-Dong Zhao, Shu-Qin Song, Zhao-Bin Ding. Unravelling ligand topology effect on the binding of oxygen reduction reaction intermediates on Fe-Nx-C single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 59(4): 214-224. |
[14] | Junlei Zhang, Wencong Liu, Biao Liu, Xiaoguang Duan, Zhimin Ao, Mingshan Zhu. Is single-atom catalyzed peroxymonosulfate activation better? Coupling with metal oxide may be better [J]. Chinese Journal of Catalysis, 2024, 59(4): 137-148. |
[15] | Zhentao Tu, Xiaoyang He, Xuan Liu, Dengke Xiong, Juan Zuo, Deli Wu, Jianying Wang, Zuofeng Chen. Electronic modification of Ni active sites by W for selective benzylamine oxidation and concurrent hydrogen production [J]. Chinese Journal of Catalysis, 2024, 58(3): 146-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||