Chinese Journal of Catalysis ›› 2025, Vol. 69: 230-240.DOI: 10.1016/S1872-2067(24)60207-X
• Articles • Previous Articles Next Articles
Dongwen Guo, Guohui Zeng, Jinxing Long(), Biaolin Yin(
)
Received:
2024-09-22
Accepted:
2024-11-29
Online:
2025-02-18
Published:
2025-02-10
Contact:
E-mail: Supported by:
Dongwen Guo, Guohui Zeng, Jinxing Long, Biaolin Yin. Switching electronic effects of UiO-67-Pd using fluorinated ligands for catalytic oxidative arylation of bio-based furfuryl alcohol[J]. Chinese Journal of Catalysis, 2025, 69: 230-240.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60207-X
Fig. 2. (a) XRD patterns of UiO-67, UiO-67-Phen(F)-Pd, UiO-67-Bpy(F)-Pd, and simulated. (b) FT-IR spectra of UiO-67-Phen-Pd, UiO-67-Phen(F)-Pd, UiO-67-Bpy-Pd, UiO-67-Bpy(F)-Pd, and UiO-67. (c) SEM images of UiO-67-Phen(F)-Pd. (d,e) TEM images of UiO-67-Phen(F)-Pd. (f) The EDX spectra of UiO-67-Phen(F)-Pd. (g) SEM images of UiO-67-Phen(F)-Pd. (h,i) TEM images of UiO-67-Phen(F)-Pd. (j) The EDX spectra of UiO-67-Phen(F)-Pd. The EDX elemental mapping images of UiO-67-Phen(F)-Pd (k?q) and UiO-67-Bpy(F)-Pd (r?x).
Fig. 3. XPS spectra of UiO-67-Phen-Pd, UiO-67-Phen(F)-Pd, UiO-67-Bpy-Pd, and UiO-67-Bpy(F)-Pd: Pd 3d (a), Zr 3d (b), and F 1s (c). (d) Pd K-edge XANES spectra of UiO-67-Phen(F)-Pd and reference samples (Pd foil and PdO). (e) FT k3-weighted Pd K-edge EXAFS curves of UiO-67-Phen(F)-Pd, UiO-67-Bpy(F)-Pd and reference samples (Pd foil and PdO). (f) FT-EXAFS R space fitting curves of UiO-67-Phen(F)-Pd. (g) Pd K-edge XANES spectra of UiO-67-Bpy(F)-Pd and reference samples (Pd foil and PdO). (h) Pd k-space spectra of UiO-67-Phen(F)-Pd, UiO-67-Bpy(F)-Pd and reference samples (Pd foil and PdO). (i) FT-EXAFS R space fitting curves of UiO-67-Bpy(F)-Pd.
Entry | Step | Catalyst | Conversion of (a)/(c) (%) | Selectivity of (b)/(d) (%) | Yield of (b)/(d) (%) | TOF e (h−1) |
---|---|---|---|---|---|---|
1 | I | None | 0 | 0 | 0 | — |
2 | UiO-67 | 0 | 0 | 0 | — | |
3 | UiO-67-Phen-Pd | 40.3 | 56.8 | 22.9 | 11.9 | |
4 | UiO-67-Phen(F)-Pd | 72.2 | 74.8 | 54.0 | 21.3 | |
5 | UiO-67-Bpy(F)-Pd | 63.4 | 36.3 | 23.0 | 18.7 | |
6 b | UiO-67-Phen(F) + Pd(TFA)2 | 21.6 | 30.4 | 6.6 | — | |
7 c | Pd(CH3CN)2Cl2 | 38.1 | 37.5 | 14.3 | 0.4 | |
8 | II | None | 0 | 0 | 0 | — |
9 | UiO-67 | 0 | 0 | 0 | — | |
10 | UiO-67-Bpy-Pd | 54.6 | 70.3 | 38.3 | 24.1 | |
11 | UiO-67-Phen(F)-Pd | 77.4 | 41.7 | 32.3 | 34.2 | |
12 | UiO-67-Bpy(F)-Pd | 85.3 | 86.5 | 73.8 | 37.7 | |
13 b | UiO-67-Bpy(F) + Pd(TFA)2 | 40.8 | 27.4 | 11.2 | — | |
14 d | Pd(OAc)2 | 46.6 | 67.9 | 31.6 | 0.7 |
Table 1 Catalytic performance of the continuous oxidative arylation of furfuryl alcohol derivative (a) under various catalysts a.
Entry | Step | Catalyst | Conversion of (a)/(c) (%) | Selectivity of (b)/(d) (%) | Yield of (b)/(d) (%) | TOF e (h−1) |
---|---|---|---|---|---|---|
1 | I | None | 0 | 0 | 0 | — |
2 | UiO-67 | 0 | 0 | 0 | — | |
3 | UiO-67-Phen-Pd | 40.3 | 56.8 | 22.9 | 11.9 | |
4 | UiO-67-Phen(F)-Pd | 72.2 | 74.8 | 54.0 | 21.3 | |
5 | UiO-67-Bpy(F)-Pd | 63.4 | 36.3 | 23.0 | 18.7 | |
6 b | UiO-67-Phen(F) + Pd(TFA)2 | 21.6 | 30.4 | 6.6 | — | |
7 c | Pd(CH3CN)2Cl2 | 38.1 | 37.5 | 14.3 | 0.4 | |
8 | II | None | 0 | 0 | 0 | — |
9 | UiO-67 | 0 | 0 | 0 | — | |
10 | UiO-67-Bpy-Pd | 54.6 | 70.3 | 38.3 | 24.1 | |
11 | UiO-67-Phen(F)-Pd | 77.4 | 41.7 | 32.3 | 34.2 | |
12 | UiO-67-Bpy(F)-Pd | 85.3 | 86.5 | 73.8 | 37.7 | |
13 b | UiO-67-Bpy(F) + Pd(TFA)2 | 40.8 | 27.4 | 11.2 | — | |
14 d | Pd(OAc)2 | 46.6 | 67.9 | 31.6 | 0.7 |
Fig. 6. (a) The energy diagram and reaction pathways for the C?H arylation of a in the presence of UiO-67-Phen-Pd and UiO-67-Phen(F)-Pd catalysts. (b) The energy diagram and reaction pathways for the C?C bond cleavage of c in the presence of UiO-67-Bpy-Pd and UiO-67-Bpy(F)-Pd catalysts.
Fig. 7. The recyclability experiments of UiO-67-Phen(F)-Pd (a) and UiO-67-Bpy(F)-Pd (b). (c) The hot filtration tests of UiO-67-Phen(F)-Pd and UiO-67-Bpy(F)-Pd. XRD patterns (d) and XPS spectra (e) of used UiO-67-Phen(F)-Pd and UiO-67-Bpy(F)-Pd. The TEM images of fresh UiO-67-Phen(F)-Pd (f), used UiO-67-Phen(F)-Pd (g), fresh UiO-67-Bpy(F)-Pd (h), and used UiO-67-Bpy(F)-Pd (i).
Fig. 8. (a) Solid-state UV-vis absorption spectra of FBs-1 and FBs-2. Tauc plots for band gap calculation of FBs-1 (b) and FBs-2 (c). (d) Photoluminescence spectra of FBs-1 and FBs-2.
|
[1] | Wenjie Yu, Chao Feng, Ronghua Li, Beibei Zhang, Yanbo Li. Recent advances in tantalum nitride for photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2025, 68(1): 51-82. |
[2] | Hui Fu, Jin Tian, Qianqian Zhang, Zhaoke Zheng, Hefeng Cheng, Yuanyuan Liu, Baibiao Huang, Peng Wang. Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite [J]. Chinese Journal of Catalysis, 2024, 64(9): 143-151. |
[3] | Chunguang Chen, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Graham Dawson, Kai Dai. Chalcogenide-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2024, 63(8): 81-108. |
[4] | Kaikai Ba, Yuʼnan Liu, Kai Zhang, Ping Wang, Yanhong Lin, Dejun Wang, Ziheng Li, Tengfeng Xie. Unveiling the multiple effects of MOF-derived TiO2 on Ti-Fe2O3 photoanodes for efficient and stable photoelectrochemical water oxidation [J]. Chinese Journal of Catalysis, 2024, 61(6): 179-191. |
[5] | Junxian Bai, Rongchen Shen, Guijie Liang, Chaochao Qin, Difa Xu, Haobin Hu, Xin Li. Topology-induced local electric polarization in 2D thiophene-based covalent organic frameworks for boosting photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2024, 59(4): 225-236. |
[6] | Cheng Yang, Xin Li, Mei Li, Guijie Liang, Zhiliang Jin. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 88-103. |
[7] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[8] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[9] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[10] | Wen Zhang, Meng Tian, Haimiao Jiao, Hai-Ying Jiang, Junwang Tang. Conformal BiVO4/WO3 nanobowl array photoanode for efficient photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2022, 43(9): 2321-2331. |
[11] | Meiyu Zhang, Chaochao Qin, Wanjun Sun, Congzhao Dong, Jun Zhong, Kaifeng Wu, Yong Ding. Energy funneling and charge separation in CdS modified with dual cocatalysts for enhanced H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1818-1829. |
[12] | Jingjing Wang, Cheng Hu, Yihe Zhang, Hongwei Huang. Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(5): 1277-1285. |
[13] | Zhiming Zhou, Jinjin Chen, Qinlong Wang, Xingxing Jiang, Yan Shen. Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode [J]. Chinese Journal of Catalysis, 2022, 43(2): 433-441. |
[14] | Jun Wan, Weijie Yang, Jiaqing Liu, Kailong Sun, Lin Liu, Feng Fu. Enhancing an internal electric field by a solid solution strategy for steering bulk-charge flow and boosting photocatalytic activity of Bi24O31ClxBr10-x [J]. Chinese Journal of Catalysis, 2022, 43(2): 485-496. |
[15] | Khakemin Khan, Lifen Xu, Ming Shi, Jiangshan Qu, Xiaoping Tao, Zhaochi Feng, Can Li, Rengui Li. Surface assembly of cobalt species for simultaneous acceleration of interfacial charge separation and catalytic reactions on Cd0.9Zn0.1S photocatalyst [J]. Chinese Journal of Catalysis, 2021, 42(6): 1004-1012. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||