Chinese Journal of Catalysis ›› 2025, Vol. 74: 308-318.DOI: 10.1016/S1872-2067(25)64698-5
• Articles • Previous Articles Next Articles
Eryu Wanga,e,1, Yi-Chun Chub,1, Wenjun Zhanga, Yanping Weic, Chuanling Sia,d,*(), Regina Palkovitse,f,g, Xin-Ping Wub,*(
), Zupeng Chena,*(
)
Received:
2025-01-15
Accepted:
2025-03-06
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: About author:
1Contributed equally to this work.
Supported by:
Eryu Wang, Yi-Chun Chu, Wenjun Zhang, Yanping Wei, Chuanling Si, Regina Palkovits, Xin-Ping Wu, Zupeng Chen. Sustainable co-production of H2 and lactic acid from lignocellulose photoreforming using Pt-C3N4 single-atom catalyst[J]. Chinese Journal of Catalysis, 2025, 74: 308-318.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64698-5
Fig. 1. (a) Schematic illustration of the synthesis of PtSA-C3N4 via a two-step calcination approach (color codes: red, platinum; purple, chlorine; green, nitrogen; orange, carbon; blue, hydrogen). (b) AC-HAADF-STEM image of PtSA-C3N4. (c) Representing HAADF-STEM image together with the corresponding EDX elemental mappings (i.e., C, N, and Pt) of PtSA-C3N4. (d) Pt 4f XPS spectra of C3N4, PtNP-C3N4, and PtSA-C3N4. Fourier transform of Pt K-edge EXAFS spectra (e), wavelet transformed EXAFS spectra (f), and Pt K-edge XANES spectra (g) of PtSA-C3N4. The spectra of Pt foil and PtO2 were shown for comparison purposes. EXAFS fitting Pt curve at R space (h) and k space (i).
Fig. 2. Effect of the amounts of PtSA-C3N4 (wGlu = 100 mg, pH = 15, wPt = 0.35 wt%) (a), glucose (wCat. = 10 mg, pH = 15, wPt = 0.35 wt%) (b), pH (wCat. = 10 mg, wGlu = 100 mg, wPt = 0.35 wt%) (c), and loading of Pt cocatalyst (d) and per Pt atomic site (wCat. = 10 mg, wGlu = 100 mg, pH = 15) (e) on photocatalytic hydrogen production rates. (f) The photocatalytic hydrogen production rates of PtSA-C3N4 over different lignocellulosic biomass substrates (100 mg) (wCat. = 10 mg, pH = 15). (g) A summary of the yield of lactic acid oxidized from monosaccharides in previous work, and more details of these reactions are available in Table S1.
Fig. 3. Time-resolved PL spectra (a), LSV curves (b), transient photocurrent response (c), and solid-state ESR spectra (d) of C3N4, PtNP-C3N4, and PtSA-C3N4. Control experiments with different additives in the photoreforming of glucose for H2 and lactic acid production (e) and DMPO ESR spin-labeling for ?OH and ?O2- applying PtSA-C3N4 (f). (g) The proposed main reaction pathway for photoreforming of monosaccharides (XYL: xylose, XYLU: xylulose, GLU: glucose, FRU: fructose, DHA: 1,3-dihydroxyacetone, HYD: 2-hydroxypropenal, PYA: pyruvic aldehyde, LAC: lactic acid).
Fig. 4. Electron-hole distributions of the first five excitations of the C3N4 (a) and PtSA-C3N4 clusters (b). H, C, N, and Pt atoms are in white, orange, green, and red, respectively. Isosurfaces (0.002 e ?-3) of electron and hole distributions are in light green and blue, respectively.
Cluster | Excited state | Excitation energy (eV) | Oscillator strength, f | Major contribution |
---|---|---|---|---|
C3N4 | S0 → S1 | 3.48 | 0.005 | HOMO → LUMO, 63% |
S0 → S2 | 3.54 | 0.007 | HOMO−1 → LUMO, 29% HOMO−1 → LUMO+1, 27% | |
S0 → S3 | 3.65 | 0.010 | HOMO−2 → LUMO+1, 58% | |
S0 → S4 | 3.85 | 0.003 | HOMO−3 → LUMO+1, 35% | |
S0 → S5 | 3.94 | 0.002 | HOMO−4 → LUMO, 29% | |
PtSA-C3N4 | S0 → S1 | 1.04 | 0.022 | HOMO → LUMO, 86% |
S0 → S2 | 1.15 | 0.015 | HOMO → LUMO+1, 82% | |
S0 → S3 | 1.69 | 0.018 | HOMO → LUMO+2, 85% | |
S0 → S4 | 1.81 | 0.004 | HOMO−1 → LUMO+1, 74% | |
S0 → S5 | 1.85 | 0.002 | HOMO−2 → LUMO+1, 86% |
Table 1 The first five excitations of the C3N4 and PtSA-C3N4 clusters.
Cluster | Excited state | Excitation energy (eV) | Oscillator strength, f | Major contribution |
---|---|---|---|---|
C3N4 | S0 → S1 | 3.48 | 0.005 | HOMO → LUMO, 63% |
S0 → S2 | 3.54 | 0.007 | HOMO−1 → LUMO, 29% HOMO−1 → LUMO+1, 27% | |
S0 → S3 | 3.65 | 0.010 | HOMO−2 → LUMO+1, 58% | |
S0 → S4 | 3.85 | 0.003 | HOMO−3 → LUMO+1, 35% | |
S0 → S5 | 3.94 | 0.002 | HOMO−4 → LUMO, 29% | |
PtSA-C3N4 | S0 → S1 | 1.04 | 0.022 | HOMO → LUMO, 86% |
S0 → S2 | 1.15 | 0.015 | HOMO → LUMO+1, 82% | |
S0 → S3 | 1.69 | 0.018 | HOMO → LUMO+2, 85% | |
S0 → S4 | 1.81 | 0.004 | HOMO−1 → LUMO+1, 74% | |
S0 → S5 | 1.85 | 0.002 | HOMO−2 → LUMO+1, 86% |
|
[1] | Yiming Jin, Wenjing Cheng, Wei Luo. Ru single atoms-induced interfacial water structure regulation for efficient alkaline hydrogen oxidation reaction [J]. Chinese Journal of Catalysis, 2025, 74(7): 240-249. |
[2] | Yunchao Zhang, Jinkang Pan, Xiang Ni, Feiqi Mo, Yuanguo Xu, Pengyu Dong. Revealing the dynamics of charge carriers in organic/inorganic hybrid FS-COF/WO3 S-scheme heterojunction for boosted photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 250-263. |
[3] | Gang Wang, Imran Muhammad, Hui-Min Yan, Jun Li, Yang-Gang Wang. Regulating the local environment of Ni single-atom catalysts with heteroatoms for efficient CO2 electroreduction [J]. Chinese Journal of Catalysis, 2025, 74(7): 120-129. |
[4] | Zhengyu Zhou, Zhiliang Jin. Custom exposed crystal facets: Synergistic effect of optimum crystal facet anisotropy and Ohmic heterojunction boosting photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 294-307. |
[5] | Qiyang Zhang, Vita A. Kondratenko, Xiangnong Ding, Jana Weiss, Stephan Bartling, Elizaveta Fedorova, Dan Zhao, Dmitry E. Doronkin, Dongxu Wang, Christoph Kubis, Evgenii V. Kondratenko. Understanding the reaction-induced restructuring of CoOx species in silicalite-1 to control selectivity in non-oxidative dehydrogenation of propane [J]. Chinese Journal of Catalysis, 2025, 74(7): 108-119. |
[6] | Xinlong Zheng, Yiming Song, Chongtai Wang, Qizhi Gao, Zhongyun Shao, Jiaxin Lin, Jiadi Zhai, Jing Li, Xiaodong Shi, Daoxiong Wu, Weifeng Liu, Wei Huang, Qi Chen, Xinlong Tian, Yuhao Liu. Properties, applications, and challenges of copper- and zinc-based multinary metal sulfide photocatalysts for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 22-70. |
[7] | Wanying Liang, Guangyue Xu, Yao Fu. Accurate restricted transition-state shape selective hydrogenation of furfural over zeolite confined Cu catalyst [J]. Chinese Journal of Catalysis, 2025, 74(7): 71-81. |
[8] | Zihao Zhang, Jiaming Zhang, Haifeng Wang, Meng Liu, Yao Xu, Kaiwei Liu, Boyang Zhang, Ke Shi, Jifang Zhang, Guijun Ma. Facet-oriented surface modification for enhancing photocatalytic hydrogen production on Sm2Ti2O5S2 nanosheets [J]. Chinese Journal of Catalysis, 2025, 74(7): 341-351. |
[9] | Chang Shu, Xiaoju Yang, Peixuan Xie, Xuan Yang, Bien Tan, Xiaoyan Wang. Long-term photocatalytic hydrogen peroxide production by hydroquinone-buffered covalent organic frameworks [J]. Chinese Journal of Catalysis, 2025, 73(6): 300-310. |
[10] | Jian-Feng Wu, Li-Ye Liang, Zheng Che, Yu-Ting Miao, Lingjun Chou. Bimetallic oxide catalysts for CO2 hydrogenation to methanol: Recent advances and challenges [J]. Chinese Journal of Catalysis, 2025, 73(6): 62-78. |
[11] | Xiaochun Hu, Longgang Tao, Kun Lei, Zhiqiang Sun, Mingwu Tan. Unraveling TiO2 phase effects on Pt single-atom catalysts for efficient CO2 conversion [J]. Chinese Journal of Catalysis, 2025, 73(6): 186-195. |
[12] | Yihan Zheng, Yuxin Wang, Ruitao Li, Haoran Yang, Yuanyuan Dai, Qiang Niu, Tiejun Lin, Kun Gong, Liangshu Zhong. CO2-free hydrogen production from solar-driven photothermal catalytic decomposition of methane [J]. Chinese Journal of Catalysis, 2025, 73(6): 289-299. |
[13] | Yannan Sun, Jiafeng Yu, Xingtao Sun, Yu Han, Qingjie Ge, Jian Sun. Designing mesh-like defective molybdenum carbides for ethanol synthesis via syngas-derived DMO hydrogenation [J]. Chinese Journal of Catalysis, 2025, 73(6): 234-241. |
[14] | Li-Li Zhang, Zhen Zhou. Electrosynthesis of value-added chemicals: Challenges from laboratory research to industrial application [J]. Chinese Journal of Catalysis, 2025, 73(6): 1-7. |
[15] | Jie Tuo, Zhenteng Sheng, Xianchen Gong, Qi Yang, Peng Wu, Hao Xu. Shape-selective synthesis of para-xylene through tandem CO2 hydrogenation and toluene methylation over ZnCeZrOx/MCM-22 catalyst [J]. Chinese Journal of Catalysis, 2025, 73(6): 174-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||