Chinese Journal of Catalysis ›› 2025, Vol. 75: 34-48.DOI: 10.1016/S1872-2067(25)64686-9
• Article • Previous Articles Next Articles
Wang Jiea,1, Chen Lulub,1, Yue Lijuna, A. W. Filot Ivob, J. M. Hensen Emielb,*(), Liu Penga,*(
)
Received:
2025-02-19
Accepted:
2025-03-05
Online:
2025-08-18
Published:
2025-07-22
Contact:
*E-mail: pengliu@hust.edu.cn (P. Liu),
e.j.m.hensen@tue.nl (E. Hensen).
About author:
1Contributed equally to this work.
Supported by:
Wang Jie, Chen Lulu, Yue Lijun, A. W. Filot Ivo, J. M. Hensen Emiel, Liu Peng. Unveiling the Au-Mn-Cu synergy in Au/LaMnCuO3 catalysts for selective ethanol oxidation[J]. Chinese Journal of Catalysis, 2025, 75: 34-48.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64686-9
Catalyst | SBET (m2 g-1) | dAu a (nm) | [Au] b (wt%) | XPS peak area ratio (%) | H2 uptake c (mmol g-1) | Acid amount d (μmol g-1) | Base amount e (μmol g-1) | ||
---|---|---|---|---|---|---|---|---|---|
(OA+OV)/OL | Mn3+/Mn | Cu+/Cu | |||||||
Au/LaMnO3 | 5.3 | 3.0 | 0.96 | 48.4 | 69.6 | — | 3.3 (3.3) | 80.7 | 150.8 |
Au/LaMn0.75Cu0.25O3 | 2.2 | 3.5 | 0.95 | 60.3 | 63.6 | 10.0 | 3.6 (3.5) | 15.3 | 50.7 |
Au/LaMn0.5Cu0.5O3 | 1.0 | 4.0 | 0.99 | 80.0 | 58.1 | 9.3 | 3.8 (3.9) | 13.6 | 39.1 |
Au/La2CuO4 | 0.5 | 6.5 | 0.98 | 481.3 | — | 0 | 4.5 (4.6) | 12.1 | 31.5 |
Table 1 Textural, structural and chemical properties of perovskite-supported Au catalysts.
Catalyst | SBET (m2 g-1) | dAu a (nm) | [Au] b (wt%) | XPS peak area ratio (%) | H2 uptake c (mmol g-1) | Acid amount d (μmol g-1) | Base amount e (μmol g-1) | ||
---|---|---|---|---|---|---|---|---|---|
(OA+OV)/OL | Mn3+/Mn | Cu+/Cu | |||||||
Au/LaMnO3 | 5.3 | 3.0 | 0.96 | 48.4 | 69.6 | — | 3.3 (3.3) | 80.7 | 150.8 |
Au/LaMn0.75Cu0.25O3 | 2.2 | 3.5 | 0.95 | 60.3 | 63.6 | 10.0 | 3.6 (3.5) | 15.3 | 50.7 |
Au/LaMn0.5Cu0.5O3 | 1.0 | 4.0 | 0.99 | 80.0 | 58.1 | 9.3 | 3.8 (3.9) | 13.6 | 39.1 |
Au/La2CuO4 | 0.5 | 6.5 | 0.98 | 481.3 | — | 0 | 4.5 (4.6) | 12.1 | 31.5 |
Fig. 1. SEM images (A), TEM images (B), AuNP size distributions (C), and XRD patterns (D) of (a) Au/LaMnO3, (b) Au/LaMn0.75Cu0.25O3, (c) Au/LaMn0.5Cu0.5O3, and (d) Au/La2CuO4.
Fig. 2. XPS spectra of the Au/LaMnO3 (a), Au/LaMn0.75Cu0.25O3 (b) and Au/La2CuO4 (c) catalysts. (A) La 3d; (B) Au 4f, Mn 3s; (C) O 1s; (D) Mn 2p; (E) Cu 2p; (F) Auger Cu LMM.
Catalyst | Conv. a (%) | Selec. a (%) | STY b (h-1) | TOF c (h-1) | Ea d (kJ mol-1) |
---|---|---|---|---|---|
Au/LaMnO3 | 99 | 1 | 4 | 162 | 76.1 |
Au/LaMn0.75Cu0.25O3 | 97 | 98 | 378 | 1580 | 40.1 |
Au/LaMn0.5Cu0.5O3 | 67 | 97 | 248 | 368 | 47.7 |
Au/La2CuO4 | 50 | 99 | 191 | 517 | 51.9 |
Au/MgCuCr2O4 | 82 | 99 | 329 | 1039 | 45.0 |
Au/La2O3 | 28 | 81 | 93 | 205 | 83.2 |
Au/β-MnO2 | 99 | 1 | 4 | 421 | 56.5 |
Au/CuO | 48 | 96 | 181 | 406 | 78.7 |
Table 2 Catalytic performance of supported Au catalysts in the aerobic ethanol oxidation.
Catalyst | Conv. a (%) | Selec. a (%) | STY b (h-1) | TOF c (h-1) | Ea d (kJ mol-1) |
---|---|---|---|---|---|
Au/LaMnO3 | 99 | 1 | 4 | 162 | 76.1 |
Au/LaMn0.75Cu0.25O3 | 97 | 98 | 378 | 1580 | 40.1 |
Au/LaMn0.5Cu0.5O3 | 67 | 97 | 248 | 368 | 47.7 |
Au/La2CuO4 | 50 | 99 | 191 | 517 | 51.9 |
Au/MgCuCr2O4 | 82 | 99 | 329 | 1039 | 45.0 |
Au/La2O3 | 28 | 81 | 93 | 205 | 83.2 |
Au/β-MnO2 | 99 | 1 | 4 | 421 | 56.5 |
Au/CuO | 48 | 96 | 181 | 406 | 78.7 |
Fig. 4. Ethanol conversion (A), AC selectivity (B) and yield (C) as a function of the reaction temperature, and (D) Arrhenius plots for ethanol oxidation, and (E) a stability test for Au/LaMn0.75Cu0.25O3. Reaction conditions: catalyst 0.06 g, ethanol 5.0 μL min-1, ethanol/O2/N2 = 1/3/36, GHSV = 100000 mL gcat-1 h-1).
Fig. 5. XPS spectra of fresh (a) and used (b) Au/LaMn0.75Cu0.25O3 catalysts. (A) La 3d; (B) Au 4f and Mn 3s; (C) O 1s; (D) Mn 2p; (E) Cu 2p; (F) Auger Cu LMM.
Fig. 6. Effect of Au loading of the Au/LaMn0.75Cu0.25O3 catalyst (I: 0.95 wt% Au, II: 0.47 wt% Au, III: 0.17 wt% Au) on the activity and selectivity (A) and STY value (B) for the ethanol oxidation. Reaction conditions: catalyst 0.06 g, ethanol 5.0 μL min-1, ethanol/O2/N2 = 1/3/36, GHSV = 100000 mL gcat-1 h-1).
Fig. 7. Surface models of optimized Au8 clusters on the (001) surfaces of LaMnO3 (A), LaMnCuO3 (B) and La2MnO4 (C). color coding: blue for La, purple for Mn, red for O, gold for Au, and olive for Cu.
Fig. 8. The Mars-van Krevelen mechanism of selective oxidation of ethanol (color codes: dark gray round rectangular: supports; gold: Au; black: C; red: O in ethanol; white: H; pink circle with black border: lattice O; pink circle with white border: absorbed O). The activation energy of each elementary step is indicated, with black, red and green representing values for Au/LaMnO3, Au/LaMnCuO3, and Au/La2CuO4, respectively. Values to the left and right of the vertical bars denote the activation energies in eV of the forward and backward reactions, respectively.
Reaction step | Au/LaMnO3 | Au/LaMnCuO3 | Au/La2CuO4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Forward | Backward | Forward | Backward | Forward | Backward | ||||
R1 | CH3CH2OH + * ⇋ CH3CH2OH* | 0 | 0.79 | 0 | 0.94 | 0 | 0.72 | ||
R2 | CH3CH2OH* ⇋ CH3CH2O*OH*Ov* | 0.06 | 0.04 | 0.28 | 0.30 | 0.33 | 0.24 | ||
R3 | CH3CH2O*OH*Ov ⇋ CH3CHO*H*OH*Ov* | 0.67 | 0.50 | 0.39 | 0.32 | 0.91 | 0.82 | ||
R4 | CH3CHO* + H*OH*Ov* ⇋ CH3CHO*H*OH*Ov* | 0 | 0.93 | 0 | 0.97 | 0 | 0.27 | ||
R5 | H*OH*Ov ⇋ H2O*Ov* | 0.97 | 1.06 | 0.70 | 0.60 | 0.79 | 0.91 | ||
R6 | H2O + Ov* ⇋ H2O*Ov* | 0 | 0.86 | 0 | 0.17 | 0 | 0.57 | ||
R7 | O2 + Ov* ⇋ O2*Ov* | 0 | 1.85 | 0 | 1.27 | 0 | 0.95 | ||
R8 | CH3CH2OH + O2*Ov* ⇋ CH3CH2OH*O2*Ov | 0 | 1.18 | 0 | 0.86 | 0 | 0.76 | ||
R9 | CH3CH2OH*O2*Ov* ⇋ CH3CH2O*OH* | 0.06 | 2.00 | 0.38 | 1.21 | 0.73 | 0.98 | ||
R10 | CH3CH2O*OH* ⇋ CH3CHO*H*OH* | 1.28 | 0.24 | 0.68 | 1.35 | 0.83 | 1.90 | ||
R11 | CH3CHO* + H*OH* ⇋ CH3CHO*H*OH* | 0 | 0.48 | 0 | 0.79 | 0 | 0.84 | ||
R12 | H*OH* ⇋ H2O* | 1.67 | 2.81 | 0.72 | 1.59 | 0.57 | 1.91 | ||
R13 | H2O + * ⇋ H2O* | 0 | 0.57 | 0 | 0.54 | 0 | 0.43 |
Table 3 DFT-computed activation energies of elementary reaction steps in selective ethanol oxidation on the Au/LaMnO3, Au/LaMnCuO3 and Au/La2CuO4 surface models (all energies in eV and corrected for the zero-point energy).
Reaction step | Au/LaMnO3 | Au/LaMnCuO3 | Au/La2CuO4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Forward | Backward | Forward | Backward | Forward | Backward | ||||
R1 | CH3CH2OH + * ⇋ CH3CH2OH* | 0 | 0.79 | 0 | 0.94 | 0 | 0.72 | ||
R2 | CH3CH2OH* ⇋ CH3CH2O*OH*Ov* | 0.06 | 0.04 | 0.28 | 0.30 | 0.33 | 0.24 | ||
R3 | CH3CH2O*OH*Ov ⇋ CH3CHO*H*OH*Ov* | 0.67 | 0.50 | 0.39 | 0.32 | 0.91 | 0.82 | ||
R4 | CH3CHO* + H*OH*Ov* ⇋ CH3CHO*H*OH*Ov* | 0 | 0.93 | 0 | 0.97 | 0 | 0.27 | ||
R5 | H*OH*Ov ⇋ H2O*Ov* | 0.97 | 1.06 | 0.70 | 0.60 | 0.79 | 0.91 | ||
R6 | H2O + Ov* ⇋ H2O*Ov* | 0 | 0.86 | 0 | 0.17 | 0 | 0.57 | ||
R7 | O2 + Ov* ⇋ O2*Ov* | 0 | 1.85 | 0 | 1.27 | 0 | 0.95 | ||
R8 | CH3CH2OH + O2*Ov* ⇋ CH3CH2OH*O2*Ov | 0 | 1.18 | 0 | 0.86 | 0 | 0.76 | ||
R9 | CH3CH2OH*O2*Ov* ⇋ CH3CH2O*OH* | 0.06 | 2.00 | 0.38 | 1.21 | 0.73 | 0.98 | ||
R10 | CH3CH2O*OH* ⇋ CH3CHO*H*OH* | 1.28 | 0.24 | 0.68 | 1.35 | 0.83 | 1.90 | ||
R11 | CH3CHO* + H*OH* ⇋ CH3CHO*H*OH* | 0 | 0.48 | 0 | 0.79 | 0 | 0.84 | ||
R12 | H*OH* ⇋ H2O* | 1.67 | 2.81 | 0.72 | 1.59 | 0.57 | 1.91 | ||
R13 | H2O + * ⇋ H2O* | 0 | 0.57 | 0 | 0.54 | 0 | 0.43 |
Fig. 9. Microkinetics simulations of the ethanol conversion rate (conditions: ethanol/O2/N2 = 1/3/36, P = 1 atm) (A) and the degree of rate control as a function of temperature on Au/LaMnO3 (B), Au/LaMnCuO3 (C) and Au/La2CuO4 (D).
Fig. 10. Steady-state surface coverages, reaction orders and apparent activation energy as a function of temperature for Au/LaMnO3 (A,D), Au/LaMnCuO3 (B,E), and Au/La2CuO4 (C,F).
Interaction | Au/LaMnO3 | Au/LaMnCuO3 | |||||
---|---|---|---|---|---|---|---|
iCOHPIS | iCOHPTS | ∆iCOHP | iCOHPIS | iCOHPTS | ∆iCOHP | ||
Mn-O/Cu-O | -1.65 | -1.53 | 0.12 | -1.47 | -0.68 | 0.79 | |
Au-O | -1.28 | -0.36 | 0.92 | -1.43 | -0.76 | 0.67 | |
Au-H | -2.49 | -2.48 | 0.01 | -3.68 | -2.81 | 0.87 | |
HO-H | -0.10 | -1.24 | -1.22 | -0.09 | -1.57 | -1.48 |
Table 4 iCOHP and ?iCOHP values for the key interactions in H2O formation reaction over Au/LaMnO3 and Au/LaMnCuO3 models.
Interaction | Au/LaMnO3 | Au/LaMnCuO3 | |||||
---|---|---|---|---|---|---|---|
iCOHPIS | iCOHPTS | ∆iCOHP | iCOHPIS | iCOHPTS | ∆iCOHP | ||
Mn-O/Cu-O | -1.65 | -1.53 | 0.12 | -1.47 | -0.68 | 0.79 | |
Au-O | -1.28 | -0.36 | 0.92 | -1.43 | -0.76 | 0.67 | |
Au-H | -2.49 | -2.48 | 0.01 | -3.68 | -2.81 | 0.87 | |
HO-H | -0.10 | -1.24 | -1.22 | -0.09 | -1.57 | -1.48 |
|
[1] | Xiangqi Zhou, Lili Li, Jun-Gang Wang, Zhanbo Li, Xiji Shao, Fupeng Cheng, Linjuan Zhang, Jian-Qiang Wang, Akhil Jain, Tao Lin, Chao Jing. Unraveling the electro-oxidation steps of methanol on a single nanoparticle by in situ nanoplasmonic scattering spectroscopy [J]. Chinese Journal of Catalysis, 2024, 57(2): 59-67. |
[2] | Xianquan Li, Jifeng Pang, Yujia Zhao, Pengfei Wu, Wenguang Yu, Peifang Yan, Yang Su, Mingyuan Zheng. Ethanol dehydrogenation to acetaldehyde over a Cuδ+-based Cu-MFI catalyst [J]. Chinese Journal of Catalysis, 2023, 49(6): 91-101. |
[3] | Huining Wang, Anxiang Guan, Junbo Zhang, Yuying Mi, Si Li, Taotao Yuan, Chao Jing, Lijuan Zhang, Linjuan Zhang, Gengfeng Zheng. Copper-doped nickel oxyhydroxide for efficient electrocatalytic ethanol oxidation [J]. Chinese Journal of Catalysis, 2022, 43(6): 1478-1484. |
[4] | Junwei Chen, Zuqiao Ou, Haixin Chen, Shuqin Song, Kun Wang, Yi Wang. Recent developments of nanocarbon based supports for PEMFCs electrocatalysts [J]. Chinese Journal of Catalysis, 2021, 42(8): 1297-1326. |
[5] | Jingping Zhong, Kexin Huang, Wentao Xu, Huaguo Tang, Muhammad Waqas, Youjun Fan, Ruixiang Wang, Wei Chen, Yixuan Wang. New strategy of S,N co-doping of conductive-copolymer-derived carbon nanotubes to effectively improve the dispersion of PtCu nanocrystals for boosting the electrocatalytic oxidation of methanol [J]. Chinese Journal of Catalysis, 2021, 42(7): 1205-1215. |
[6] | Jingjie Luo, Yanan Dong, Corinne Petit, Changhai Liang. Development of gold catalysts supported by unreducible materials: Design and promotions [J]. Chinese Journal of Catalysis, 2021, 42(5): 670-693. |
[7] | Shibo Li, Zhi Qun Tian, Yang Liu, Zheng Jang, Syed Waqar Hasan, Xingfa Chen, Panagiotis Tsiakaras, Pei Kang Shen. Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions [J]. Chinese Journal of Catalysis, 2021, 42(4): 648-657. |
[8] | Jianfang Liu, Zhenzhen Ran, Qiyan Cao, Shengfu Ji. Preparation of MIL-88B(Fex,Co1‒x) catalysts and their application in one-step liquid-phase methanol oxidation to methyl formate using H2O2 [J]. Chinese Journal of Catalysis, 2021, 42(12): 2254-2264. |
[9] | Panpan Wang, Jiahao Duan, Jie Wang, Fuming Mei, Peng Liu. Elucidating structure-performance correlations in gas-phase selective ethanol oxidation and CO oxidation over metal-doped γ-MnO2 [J]. Chinese Journal of Catalysis, 2020, 41(8): 1298-1310. |
[10] | Hee Jin Kim, Yong-Deok Ahn, Jeonghyeon Kim, Kyoung-Su Kim, Yeon Uk Jeong, Jong Wook Hong, Sang-Il Choi. Surface elemental distribution effect of Pt-Pb hexagonal nanoplates for electrocatalytic methanol oxidation reaction [J]. Chinese Journal of Catalysis, 2020, 41(5): 813-819. |
[11] | Rao Lu, Lei He, Yang Wang, Xin-Qian Gao, Wen-Cui Li. Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation [J]. Chinese Journal of Catalysis, 2020, 41(2): 350-356. |
[12] | Dongni Yu, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Stabilizing copper species using zeolite for ethanol catalytic dehydrogenation to acetaldehyde [J]. Chinese Journal of Catalysis, 2019, 40(9): 1375-1384. |
[13] | Jun Yang, Yuxi Liu, Jiguang Deng, Xingtian Zhao, Kunfeng Zhang, Zhuo Han, Hongxing Dai. AgAuPd/meso-Co3O4:High-performance catalysts for methanol oxidation [J]. Chinese Journal of Catalysis, 2019, 40(6): 837-848. |
[14] | Sheng Zhang, Hai Liu, Na Zhang, Rong Xia, Siyu Kuang, Geping Yin, Xinbin Ma. Tuning the electronic structure of platinum nanocrystals towards high efficient ethanol oxidation [J]. Chinese Journal of Catalysis, 2019, 40(12): 1904-1911. |
[15] | Fawad Ahmad, Laihao Luo, Xu Li, Hongwen Huang, Jie Zeng. Boosting fuel cell catalysis by surface doping of W on Pd nanocubes [J]. Chinese Journal of Catalysis, 2018, 39(7): 1202-1209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||