Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (8): 1297-1326.DOI: 10.1016/S1872-2067(20)63736-6
• Reviews • Previous Articles Next Articles
Junwei Chen, Zuqiao Ou, Haixin Chen, Shuqin Song, Kun Wang, Yi Wang*()
Received:
2020-10-05
Accepted:
2020-11-29
Online:
2021-08-18
Published:
2020-12-10
Supported by:
Junwei Chen, Zuqiao Ou, Haixin Chen, Shuqin Song, Kun Wang, Yi Wang. Recent developments of nanocarbon based supports for PEMFCs electrocatalysts[J]. Chinese Journal of Catalysis, 2021, 42(8): 1297-1326.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63736-6
Nano carbon- based materials | Preparation methods | Material characteristics | Application fields | Problems to be solved as a catalyst support | Solutions | |||
---|---|---|---|---|---|---|---|---|
CNTs | 1. Arc discharge method 2. Laser ablation 3. Solid phase pyrolysis 4. Ion or laser sputtering 5. Catalytic cracking | 1. Hexagonal arrangement of carbon atom layers 2. One-dimensional nanostructure 3. Low impedance 4. Good conductivity and stability 5. Excellent resistance to electrochemical corrosion | 1. Composite materials 2. Electronic devices 3. Fluorescent labels | 1. Small active specific surface area 2. Surface inertness 3. High price | 1. Form hybrid materials with other carbon materials; 2. Dope metal or nonmetal to form composite materials | |||
Graphene (GP) | 1. Mechanical peeling 2. Redox method 3. Chemical vapor deposition (CVD) 4. Oriented epiphysis | 1. Two-dimensional planar structure 2. Large theoretical specific surface area (2630 m2 g-1) 3. High electrical conductivity (106 S cm-1) 4. Good resistance to electrochemical corrosion | 1. Physics 2. Materials 3. Electronic information 4. Computers | 1. Metal nanoparticles are easily reunited 2. Surface is chemically inert | 1. Structured into 3D material 2. Heteroatom doping 3. Surface defect engineering | |||
Ordered mesoporous carbon (OMC) | 1. Hard template method 2. Soft template method | 1. Uniformly adjustable pore diameter 2. Good conductivity 3. Good stability 4. Large specific surface area 5. Large pore volume | 1. Adsorption 2. Electrochemistry 3. Biology 4. Catalysis | 1. Complex manufacturing process 2. Orderly structure is easily broken | Surface functionalization with acid | |||
Carbon aerogel (CA) | 1. Organogel formation 2. Super-critical drying 3. Carbonization process | 1. Amorphous carbon materials 2. Controllable nanoporous 3D network structure 3. High specific surface area (600-1100 m2 g-1) 4. High porosity (80%-98%) 5. High stability | 1. Catalyst 2. Electrochemistry 3. Hydrogen storage 4. Template | 1. Low graphitization degree 2. Poor electrochemical corrosion resistance | 1. Surface modification 2. Improving the graphitization degree | |||
Carbon nanofiber (CNF) | 1. CVD 2. Solid phase synthesis 3. Electrospinning | 1. Large specific surface area 2. Good electrical conductivity 3. Good chemical stability 4. High single strength 5. Low cost | 1. Chemical engineering 2. Medicine 3. Sewage prevention | 1. Difficult to control shape 2. Uneven performance | 1. Surface stabilization 2. Element doping | |||
CB | 1. Spray method 2. Lamp smoke method 3. Drum method 4. Plasma method | 1. Good electrochemical performance 2. BET specific surface area is approximately 250 m2 g-1 3. The proportion of mesopores and macropores exceeds 54% 4. Electrical conductivity is approximately 2.77 S cm-1 | 1. Chemical engineering 2. Transportation 3. Textile | 1. Poor resistance to electrochemical corrosion 2. The proportion of micropores is still very high | 1. Improve the degree of graphitization 2. Doping heteroatoms |
Table 1 Nanocarbons as the support for PEMFC electrocatalysts.
Nano carbon- based materials | Preparation methods | Material characteristics | Application fields | Problems to be solved as a catalyst support | Solutions | |||
---|---|---|---|---|---|---|---|---|
CNTs | 1. Arc discharge method 2. Laser ablation 3. Solid phase pyrolysis 4. Ion or laser sputtering 5. Catalytic cracking | 1. Hexagonal arrangement of carbon atom layers 2. One-dimensional nanostructure 3. Low impedance 4. Good conductivity and stability 5. Excellent resistance to electrochemical corrosion | 1. Composite materials 2. Electronic devices 3. Fluorescent labels | 1. Small active specific surface area 2. Surface inertness 3. High price | 1. Form hybrid materials with other carbon materials; 2. Dope metal or nonmetal to form composite materials | |||
Graphene (GP) | 1. Mechanical peeling 2. Redox method 3. Chemical vapor deposition (CVD) 4. Oriented epiphysis | 1. Two-dimensional planar structure 2. Large theoretical specific surface area (2630 m2 g-1) 3. High electrical conductivity (106 S cm-1) 4. Good resistance to electrochemical corrosion | 1. Physics 2. Materials 3. Electronic information 4. Computers | 1. Metal nanoparticles are easily reunited 2. Surface is chemically inert | 1. Structured into 3D material 2. Heteroatom doping 3. Surface defect engineering | |||
Ordered mesoporous carbon (OMC) | 1. Hard template method 2. Soft template method | 1. Uniformly adjustable pore diameter 2. Good conductivity 3. Good stability 4. Large specific surface area 5. Large pore volume | 1. Adsorption 2. Electrochemistry 3. Biology 4. Catalysis | 1. Complex manufacturing process 2. Orderly structure is easily broken | Surface functionalization with acid | |||
Carbon aerogel (CA) | 1. Organogel formation 2. Super-critical drying 3. Carbonization process | 1. Amorphous carbon materials 2. Controllable nanoporous 3D network structure 3. High specific surface area (600-1100 m2 g-1) 4. High porosity (80%-98%) 5. High stability | 1. Catalyst 2. Electrochemistry 3. Hydrogen storage 4. Template | 1. Low graphitization degree 2. Poor electrochemical corrosion resistance | 1. Surface modification 2. Improving the graphitization degree | |||
Carbon nanofiber (CNF) | 1. CVD 2. Solid phase synthesis 3. Electrospinning | 1. Large specific surface area 2. Good electrical conductivity 3. Good chemical stability 4. High single strength 5. Low cost | 1. Chemical engineering 2. Medicine 3. Sewage prevention | 1. Difficult to control shape 2. Uneven performance | 1. Surface stabilization 2. Element doping | |||
CB | 1. Spray method 2. Lamp smoke method 3. Drum method 4. Plasma method | 1. Good electrochemical performance 2. BET specific surface area is approximately 250 m2 g-1 3. The proportion of mesopores and macropores exceeds 54% 4. Electrical conductivity is approximately 2.77 S cm-1 | 1. Chemical engineering 2. Transportation 3. Textile | 1. Poor resistance to electrochemical corrosion 2. The proportion of micropores is still very high | 1. Improve the degree of graphitization 2. Doping heteroatoms |
Fig. 4. (a) Schematic illustration for the effect of the structural regularity of the carbon support on the activity of Pt and (b) cyclic voltagrammograms of ethanol oxidation on Pt/WMCs and Pt/CMK-3. Reproduced with permission from Ref. [57], Copyright 2010 Elsevier. (c) Cyclic voltammetry curves of the as-prepared Pt/WMCs and Pt/CMK-3; (d) schematic diagram of highly OMC (CMK-3 and FDU-15) with different nanopore arrays and (e) comparison of electrochemical performance of Pt/CMK-3 and Pt/FDU-15. Reproduced with permission from Ref. [59], Copyright 2011 Royal Society of Chemistry.
Fig. 5. SEM (a), TEM (b), and HAADF-STEM (c,d) images of Fe/N-GPC; (e) Schematic diagram of molecular diffusion in an hierarchical pore structure. Reproduced with permission from Ref. [74], Copyright 2017 American Chemical Society.
Fig. 6. CV curve (a) and polarization curve (b) of Pt/WMC-F0 and Pt/WMC-F4; (c) Schematic of the effect of pore diameter of WMCs on the accessibility of Pt nanoparticles; (d) Comparison of the peak current density for EOR of mesoporous carbon with different pore diameters under different temperatures. Reproduced with permission from Ref. [78], Copyright 2010 Elsevier.
Fig. 8. (a) Schematic diagram of four types of N species in NCs, namely, pyridinic nitrogen (A), pyrrolic nitrogen (B), quaternary nitrogen (C), and pyridine-N-X (D); (b) Comparison of polarization curves; (c) Electrochemical performance of Pd/C, Pd@N-C NFs, and N-C NFs. Reproduced with permission from Ref. [97], Copyright 2019 Royal Society of Chemistry; (d) CV curves of Pt/NMC-1 and Pt/NMC-2 in an acid electrolyte. Reproduced with permission from Ref. [93], Copyright 2018 Elsevier.
Introduction method | Nanostructured morphology | N-precursor /method | T/°C | NAa /at% | N6b /% | N5c /% | NQd /% | NXe /% | ABET /m2 g-1 | ORR | R啊啊啊ef. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Onset potential (V) | Limiting current density (mA cm-2) | |||||||||||
In situ process | N-CNTi | CCVDj | 1000 | 1.0 | 38.0 | 25.0 | √ | √ | 911.0 | 13.0 | — | — | [ |
N-Carbon nanocapsule | Gd-DTPAk carbonization | 700 | 7.1 | 27.6 | 61.8 | 8.4 | 2.2 | — | 13.0 | ~-0.95f,g | 20.1 | [ | |
900 | 3.2 | 19.8 | 63.3 | 7.2 | 5.3 | — | 13.0 | ~-0.95f,g | 17.6 | [ | |||
N-OMCl | Modified nanocasting | 800 | 5.07 | 31.9 | √ | √ | 9.0 | 470.0 | 13.0 | ~0.71h | 4.0 | [ | |
900 | 3.13 | 26.4 | √ | √ | 14.0 | 569.0 | 13.0 | ~0.75h | 4.3 | [ | |||
1000 | 2.20 | 20.9 | √ | √ | 18.5 | 629.0 | 13.0 | ~0.78h | 4.5 | [ | |||
1100 | 1.25 | 17.9 | √ | √ | 17.4 | 517.0 | 13.0 | ~0.73h | 4.0 | [ | |||
N-Nanoporous carbon | NaCl-assisted pyrolysis | 900 | 6.7 | 72.0 | 13.4 | 10.5 | 4.1 | 733.0 | 13.0 | 0.98g | 33.8 | [ | |
N-ZIFl derived carbon | N2+ carbonization | 700 | — | 52.0 | 32.0 | 11.0 | 5.0 | 74.47 | 1.0 | — | — | [ | |
750 | — | 46.0 | 27.0 | 16.0 | 11.0 | 75.81 | 1.0 | — | — | [ | |||
800 | — | 45.0 | 21.0 | 18.0 | 16.00 | 77.74 | 1.0 | — | — | [ | |||
850 | — | 42.0 | 21.0 | 19.0 | 17.0 | 79.43 | 1.0 | 0.58h | 4.75 | [ | |||
900 | — | 37.0 | 21.0 | 21.0 | 21.0 | 83.50 | 1.0 | — | — | [ | |||
N-mesoporous carbon | SiO2-assisted sol-gel method | 800 | 11.0 | 18.0 | 58.0 | — | 24.0 | 609.0 | 2.0 | ~0.80h | 1.44 | [ | |
800 | 6.0 | 12.0 | 61.0 | — | 27.0 | 736.0 | 2.0 | ~0.75h | 1.18 | [ | |||
Post treatment | N-GP | Flake graphite + NH3 heat treatment | 800 | 2.8 | 55.4 | 33.2 | 11.4 | — | — | 13.0 | 0.184g | ~2.7 | [ |
900 | 2.8 | 55.7 | 30.4 | 13.9 | — | — | 13.0 | 0.308g | ~2.9 | [ | |||
1000 | 2.0 | 51.0 | 33.0 | 16.0 | — | — | 13.0 | 0.204g | ~3.0 | [ | |||
N-OMC | NH3 heat treatment | 950 | 6.0 | 44.0 | — | 8.6 | — | 690.0 | 2.0 | 0.67h | ~3.7 | [ | |
1000 | 3.6 | 45.2 | — | 9.0 | — | 482.0 | 2.0 | 0.7h | ~4.0 | [ | |||
1050 | 4.6 | 46.9 | — | 10.0 | — | 229.0 | 2 | 0.72h | ~4.2 | [ | |||
N-MWCNTm | N2 plasma sputtering | — | 4.0 | 9.99 | 58.6 | 18.28 | 13.13 | — | 2.0 | 0.90h | 6.0 | [ | |
N-CNTi | CCVDj + NH3 heat treatment | 670 | 1.0 | 45.0 | 43.0 | 12.0 | — | 160.0 | 2.0 | 0.77h | 2.88 | [ |
Table 2 Metal free NC as electrocatalysts.
Introduction method | Nanostructured morphology | N-precursor /method | T/°C | NAa /at% | N6b /% | N5c /% | NQd /% | NXe /% | ABET /m2 g-1 | ORR | R啊啊啊ef. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Onset potential (V) | Limiting current density (mA cm-2) | |||||||||||
In situ process | N-CNTi | CCVDj | 1000 | 1.0 | 38.0 | 25.0 | √ | √ | 911.0 | 13.0 | — | — | [ |
N-Carbon nanocapsule | Gd-DTPAk carbonization | 700 | 7.1 | 27.6 | 61.8 | 8.4 | 2.2 | — | 13.0 | ~-0.95f,g | 20.1 | [ | |
900 | 3.2 | 19.8 | 63.3 | 7.2 | 5.3 | — | 13.0 | ~-0.95f,g | 17.6 | [ | |||
N-OMCl | Modified nanocasting | 800 | 5.07 | 31.9 | √ | √ | 9.0 | 470.0 | 13.0 | ~0.71h | 4.0 | [ | |
900 | 3.13 | 26.4 | √ | √ | 14.0 | 569.0 | 13.0 | ~0.75h | 4.3 | [ | |||
1000 | 2.20 | 20.9 | √ | √ | 18.5 | 629.0 | 13.0 | ~0.78h | 4.5 | [ | |||
1100 | 1.25 | 17.9 | √ | √ | 17.4 | 517.0 | 13.0 | ~0.73h | 4.0 | [ | |||
N-Nanoporous carbon | NaCl-assisted pyrolysis | 900 | 6.7 | 72.0 | 13.4 | 10.5 | 4.1 | 733.0 | 13.0 | 0.98g | 33.8 | [ | |
N-ZIFl derived carbon | N2+ carbonization | 700 | — | 52.0 | 32.0 | 11.0 | 5.0 | 74.47 | 1.0 | — | — | [ | |
750 | — | 46.0 | 27.0 | 16.0 | 11.0 | 75.81 | 1.0 | — | — | [ | |||
800 | — | 45.0 | 21.0 | 18.0 | 16.00 | 77.74 | 1.0 | — | — | [ | |||
850 | — | 42.0 | 21.0 | 19.0 | 17.0 | 79.43 | 1.0 | 0.58h | 4.75 | [ | |||
900 | — | 37.0 | 21.0 | 21.0 | 21.0 | 83.50 | 1.0 | — | — | [ | |||
N-mesoporous carbon | SiO2-assisted sol-gel method | 800 | 11.0 | 18.0 | 58.0 | — | 24.0 | 609.0 | 2.0 | ~0.80h | 1.44 | [ | |
800 | 6.0 | 12.0 | 61.0 | — | 27.0 | 736.0 | 2.0 | ~0.75h | 1.18 | [ | |||
Post treatment | N-GP | Flake graphite + NH3 heat treatment | 800 | 2.8 | 55.4 | 33.2 | 11.4 | — | — | 13.0 | 0.184g | ~2.7 | [ |
900 | 2.8 | 55.7 | 30.4 | 13.9 | — | — | 13.0 | 0.308g | ~2.9 | [ | |||
1000 | 2.0 | 51.0 | 33.0 | 16.0 | — | — | 13.0 | 0.204g | ~3.0 | [ | |||
N-OMC | NH3 heat treatment | 950 | 6.0 | 44.0 | — | 8.6 | — | 690.0 | 2.0 | 0.67h | ~3.7 | [ | |
1000 | 3.6 | 45.2 | — | 9.0 | — | 482.0 | 2.0 | 0.7h | ~4.0 | [ | |||
1050 | 4.6 | 46.9 | — | 10.0 | — | 229.0 | 2 | 0.72h | ~4.2 | [ | |||
N-MWCNTm | N2 plasma sputtering | — | 4.0 | 9.99 | 58.6 | 18.28 | 13.13 | — | 2.0 | 0.90h | 6.0 | [ | |
N-CNTi | CCVDj + NH3 heat treatment | 670 | 1.0 | 45.0 | 43.0 | 12.0 | — | 160.0 | 2.0 | 0.77h | 2.88 | [ |
Fig. 9. Comparison of the relative potential surface energy of different types of N in nitrogen-doping graphitic carbon materials as calculated by DFT. Reproduced with permission from Ref. [104], Copyright 2020 American Chemical Society.
Fig. 10. Comparison of specific activity (a) and mass activity (b) of Pt/C and Pt@CNx/CNT before and after ADT. Reproduced with permission from Ref. [121], Copyright 2015 American Chemical Society.
Type of group | Name | Species released | Peak temperature (K) | |
---|---|---|---|---|
| Carboxylic | CO2 | ca. 510 | |
| Lactone | CO2 | ca. 940 | |
| Anhydride | CO + CO2 | ca. 820 | |
| Phenol | CO | ca. 905 | |
| Carbonyl | CO | ca. 1080 | |
| Ether | CO | ca. 973 | |
| Quinone | CO | ca. 1080 |
Table 3 Type of groups and their decomposition temperatures in the TPD test [147].
Type of group | Name | Species released | Peak temperature (K) | |
---|---|---|---|---|
| Carboxylic | CO2 | ca. 510 | |
| Lactone | CO2 | ca. 940 | |
| Anhydride | CO + CO2 | ca. 820 | |
| Phenol | CO | ca. 905 | |
| Carbonyl | CO | ca. 1080 | |
| Ether | CO | ca. 973 | |
| Quinone | CO | ca. 1080 |
Carbon materials | Oxidative treatment | Catalyst synthesis method | Untreated Pt particle (nm) | Treated Pt particle (nm) | Untreated electrochemical surface area (m2 g-1) | Treated electrochemical surface Area (m2 g-1) | R啊啊啊ef. |
---|---|---|---|---|---|---|---|
OMC | H2SO4:HNO3 (1:1) | Acid + refluxing + AEPTMSa | 4.3 | 2.9 | — | — | [ |
CB | HNO3:HCl (2:1) | Impregnation + H2 reduction | 2.7e | 3.5e | 63.0d 36.0e | 77.0b 34.9c | [ |
CS | Ozone | Heat treatment + 25 °C d | — | — | 24.4 | 2.9 | [ |
Heat treatment + 90 °C d | — | — | 24.4 | 11.1 | [ | ||
Heat treatment + 160 °C d | — | — | 24.4 | 87.1 | [ | ||
Heat treatment + 200 °C d | — | — | 24.4 | 18.7 | [ | ||
MWCNTe | KOH + calcination | EGf + microwave | 3.2 | 2.9 | 20.0 | 60.0 | [ |
H2SO4:HNO3 (3:1) | Plasma sputtering | 3.2d | 4.9d | 61.4 | 90.4 | [ | |
OH‒ | H2(PtCl6) + heat treatment | — | 2.4 | 79.0 | 58.0 | [ | |
COOH‒ | — | 2.6 | 79.0 | 73.0 | [ | ||
R-GOg | Ozone | High temperature adsorption | 2.0 | 3.0 | 48.0 | 51.0 | [ |
Fluorine | Soaking + freezing | 2.0 | 5.9 | 48.0 | 20.0 | [ |
Table 4 The effect of carbon support oxidative treatment on the electrocatalyst activity.
Carbon materials | Oxidative treatment | Catalyst synthesis method | Untreated Pt particle (nm) | Treated Pt particle (nm) | Untreated electrochemical surface area (m2 g-1) | Treated electrochemical surface Area (m2 g-1) | R啊啊啊ef. |
---|---|---|---|---|---|---|---|
OMC | H2SO4:HNO3 (1:1) | Acid + refluxing + AEPTMSa | 4.3 | 2.9 | — | — | [ |
CB | HNO3:HCl (2:1) | Impregnation + H2 reduction | 2.7e | 3.5e | 63.0d 36.0e | 77.0b 34.9c | [ |
CS | Ozone | Heat treatment + 25 °C d | — | — | 24.4 | 2.9 | [ |
Heat treatment + 90 °C d | — | — | 24.4 | 11.1 | [ | ||
Heat treatment + 160 °C d | — | — | 24.4 | 87.1 | [ | ||
Heat treatment + 200 °C d | — | — | 24.4 | 18.7 | [ | ||
MWCNTe | KOH + calcination | EGf + microwave | 3.2 | 2.9 | 20.0 | 60.0 | [ |
H2SO4:HNO3 (3:1) | Plasma sputtering | 3.2d | 4.9d | 61.4 | 90.4 | [ | |
OH‒ | H2(PtCl6) + heat treatment | — | 2.4 | 79.0 | 58.0 | [ | |
COOH‒ | — | 2.6 | 79.0 | 73.0 | [ | ||
R-GOg | Ozone | High temperature adsorption | 2.0 | 3.0 | 48.0 | 51.0 | [ |
Fluorine | Soaking + freezing | 2.0 | 5.9 | 48.0 | 20.0 | [ |
Fig. 11. Schematic diagram of H2SO4/HNO3, AEPTMS, and H2O2 oxidatively modifying the OMC surface. Reproduced with permission from Ref. [150], Copyright 2012 Elsevier.
Fig. 12. (a) Mass activity comparison of Pt/CB and Pt/CB_O before and after the ADT test; (b) Schematic diagram of the particle size changes of Pt/CB and Pt/CB_O during ADT. Reproduced with permission from Ref. [155], Copyright 2016 Elsevier.
Fig. 13. Schematic diagram of the structure and performance of the Pt/S-C catalyst. Reproduced with permission from Ref. [162], Copyright 2020 Elsevier.
Introduction method | Materials | Preparation methods | Particles size (nm) | pH value | Electrocatalytic performance | R啊啊啊ef. |
---|---|---|---|---|---|---|
In situ | S-carbon shell | Sodium dodecyl sulfate (SDS) + ethyleneglycol (EG)-stirring + pyrolysis | 8.39 | 13.0 | 0.99 c (vs. RHE) | [ |
S-nanocarbon spheres | Thioanisole (TOAS) + benzene-(solution plasma synthesis) | 3.00 | 13.0 | 490 d | [ | |
Post-treatment | S-graphene | GO + diethylene glycol methyl ether-refluxing | — | 13.0 | 0.02 c (vs. Hg/HgO) -0.105 e (vs. Hg/HgO) | [ |
GP + phenyl disulfide (PDS) + annealing | 4.00 | 2.0 | 182 d | [ | ||
S-CNTa | Functionalized CNTa + PDS-heating | 6.20 | 2.0 | 272 d 17.2f 1.61g | [ | |
S-MWCNTb | MWCNTs + SDS-ultrasonication 3,4-ethylenedioxythiophene + (NH4)2S2O8-annealing | 2.37 | 1.0 | 161.4f 0.16c | [ |
Table 5 Sulfur-doped carbon as the PEMFC electrocatalyst support.
Introduction method | Materials | Preparation methods | Particles size (nm) | pH value | Electrocatalytic performance | R啊啊啊ef. |
---|---|---|---|---|---|---|
In situ | S-carbon shell | Sodium dodecyl sulfate (SDS) + ethyleneglycol (EG)-stirring + pyrolysis | 8.39 | 13.0 | 0.99 c (vs. RHE) | [ |
S-nanocarbon spheres | Thioanisole (TOAS) + benzene-(solution plasma synthesis) | 3.00 | 13.0 | 490 d | [ | |
Post-treatment | S-graphene | GO + diethylene glycol methyl ether-refluxing | — | 13.0 | 0.02 c (vs. Hg/HgO) -0.105 e (vs. Hg/HgO) | [ |
GP + phenyl disulfide (PDS) + annealing | 4.00 | 2.0 | 182 d | [ | ||
S-CNTa | Functionalized CNTa + PDS-heating | 6.20 | 2.0 | 272 d 17.2f 1.61g | [ | |
S-MWCNTb | MWCNTs + SDS-ultrasonication 3,4-ethylenedioxythiophene + (NH4)2S2O8-annealing | 2.37 | 1.0 | 161.4f 0.16c | [ |
Fig. 14. (a) Schematic diagram for the preparation of the Pt/S-MWCNTs catalyst and (b,c) CV and current-time curves of Pt/S-MWCNT (A), Pt/AO-MWCNT (B), and commercial Pt/C (C) catalysts. Reproduced with permission from Ref. [166], Copyright 2017 Royal Society of Chemistry.
Introduction method | Material | Method | Metal particle size (nm) | pH | Catalytic performance | R啊啊啊ef. |
---|---|---|---|---|---|---|
In situ | N/S co-doped honeycomb-ordered carbon | 1. SiO2 template + fluidic ANTc cladding 2. Carbonization 3. HF etching | 2.6 | 1 | 100i (for ORR) 0.99j (for ORR) | [ |
N/S co-doped porous carbon | 1. Salt template method | 4.59 | 13 | 528k (for ORR) 112.34l (for ORR) ~0.8j (for ORR) | [ | |
Post treatment | N/P co-doped GP | 1. Phosphoric acid + GP -hydrothermal synthesis 2. NH4OH + P-GOd hydrothermal synthesis | 2-4 | 13 | 108.6m (for MOR) 133.5l (for MOR) | [ |
N/B co-doped SWCNHa | 1. B4C + melamine composites + carbon rod-DCe arc-vaporization | 5 | 1 | 100i (for ORR) | [ | |
S/P co-doped GP | 1. Phosphoric acid + GO (ultrasonication-calcination) 2. Sulfuric acid + P-GOd (ultrasonication-calcination) | 4.5 | 13 | 0.93i (for ORR) | [ | |
N-S-P co-doped HCSb | 1. HCCPf + BPSg + TEAh pyrolysis 2. Etching | 4-6 | 1 | 1127n (for EOR) 1.61o (for EOR) | [ |
Table 6 Multi-atom co-doped carbon as the PEMFC electrocatalyst support.
Introduction method | Material | Method | Metal particle size (nm) | pH | Catalytic performance | R啊啊啊ef. |
---|---|---|---|---|---|---|
In situ | N/S co-doped honeycomb-ordered carbon | 1. SiO2 template + fluidic ANTc cladding 2. Carbonization 3. HF etching | 2.6 | 1 | 100i (for ORR) 0.99j (for ORR) | [ |
N/S co-doped porous carbon | 1. Salt template method | 4.59 | 13 | 528k (for ORR) 112.34l (for ORR) ~0.8j (for ORR) | [ | |
Post treatment | N/P co-doped GP | 1. Phosphoric acid + GP -hydrothermal synthesis 2. NH4OH + P-GOd hydrothermal synthesis | 2-4 | 13 | 108.6m (for MOR) 133.5l (for MOR) | [ |
N/B co-doped SWCNHa | 1. B4C + melamine composites + carbon rod-DCe arc-vaporization | 5 | 1 | 100i (for ORR) | [ | |
S/P co-doped GP | 1. Phosphoric acid + GO (ultrasonication-calcination) 2. Sulfuric acid + P-GOd (ultrasonication-calcination) | 4.5 | 13 | 0.93i (for ORR) | [ | |
N-S-P co-doped HCSb | 1. HCCPf + BPSg + TEAh pyrolysis 2. Etching | 4-6 | 1 | 1127n (for EOR) 1.61o (for EOR) | [ |
Fig. 15. (a) Schematic diagram for the preparation of the Pd/N-P-G catalyst; (b) Comparison of CV curves of different catalysts in 1 M KOH; (c) Comparison chart of the ECSA values of different catalysts. Reproduced with permission from Ref. [170], Copyright 2019 Elsevier.
Introduction method | Synthesis product | Synthesis procedure | Nanostructured morphology | Surface area (m2 g-1) | Particle sizea (nm) | Electrocatalyst ratio for electrochemical reaction | R啊啊啊ef. |
---|---|---|---|---|---|---|---|
In situ process | WC-C | Hydrothermal carbonization | Microspheres | 256.0 | — | 1.4 for ESA 1.6 for ORRb,c | [ |
Hydrothermal carbonization | Mesoporous nanochain | 113.0 | — | 1.3 for ESA 1.6 for MORb | [ | ||
Hydrothermal carbonization | Hollow morphology | 433 | 3.6 | 1.96 for MORb | [ | ||
738 | — | 2.4 for MORb | |||||
Hydrothermal carbonization | Spherical morphology | 89 | 5.0 | 1.5 for ORRb | [ | ||
Soft templating carbonization | Ordered mesoporosity | 538.0 | 7.2 | 2.4 for MORd | [ | ||
WC-OMC | Hydrothermal and hard-templating carbonization | Ordered mesoporosity | 409.0 | 5.0 | 1.1 for MORd | [ | |
Pulse microwave-assisted polyol carbonization | Ordered mesoporosity | 409.0 | 5.0 | 1.0 for MORb | [ | ||
Hydrothermal carbonization | Ordered mesoporosity | 344.0 | 3.86 | — | [ | ||
Post-treatment | WC-C | Carbothermal H2 reduction | Bamboo-like morphology | — | — | 1.56 for MORb | [ |
Carbothermal N2 calcination | Macroporosity | 82.1 | 3.4 | 2.9 for ORRb | [ | ||
Carbothermal H2 reduction | Spherical morphology | 89.0 | 50.0-100.0 | — | [ | ||
WC-Ge | Microwave assisted carburization | Hexagonal prism shape | — | 5 | 2.29 for ESA | [ | |
WC-MWCNTf | Microwave carburization | Nanotube structure | — | — | 1.1 for MORb | [ | |
WC-GCg | Indirect carbonization | 3D Spheris | — | 50.0-200.0 | 3.7 for ORRa | [ | |
WC-HMGh | Microwave irradiation | Hemisphere-shaped macroporosity | 58.7 | 3.0 | 2.4 for ORRb | [ | |
WC-NCi | Indirect carbonization | Macroporosity | — | — | 2.5 for ORRb | [ |
Table 7 WC as electrocatalyst material supports.
Introduction method | Synthesis product | Synthesis procedure | Nanostructured morphology | Surface area (m2 g-1) | Particle sizea (nm) | Electrocatalyst ratio for electrochemical reaction | R啊啊啊ef. |
---|---|---|---|---|---|---|---|
In situ process | WC-C | Hydrothermal carbonization | Microspheres | 256.0 | — | 1.4 for ESA 1.6 for ORRb,c | [ |
Hydrothermal carbonization | Mesoporous nanochain | 113.0 | — | 1.3 for ESA 1.6 for MORb | [ | ||
Hydrothermal carbonization | Hollow morphology | 433 | 3.6 | 1.96 for MORb | [ | ||
738 | — | 2.4 for MORb | |||||
Hydrothermal carbonization | Spherical morphology | 89 | 5.0 | 1.5 for ORRb | [ | ||
Soft templating carbonization | Ordered mesoporosity | 538.0 | 7.2 | 2.4 for MORd | [ | ||
WC-OMC | Hydrothermal and hard-templating carbonization | Ordered mesoporosity | 409.0 | 5.0 | 1.1 for MORd | [ | |
Pulse microwave-assisted polyol carbonization | Ordered mesoporosity | 409.0 | 5.0 | 1.0 for MORb | [ | ||
Hydrothermal carbonization | Ordered mesoporosity | 344.0 | 3.86 | — | [ | ||
Post-treatment | WC-C | Carbothermal H2 reduction | Bamboo-like morphology | — | — | 1.56 for MORb | [ |
Carbothermal N2 calcination | Macroporosity | 82.1 | 3.4 | 2.9 for ORRb | [ | ||
Carbothermal H2 reduction | Spherical morphology | 89.0 | 50.0-100.0 | — | [ | ||
WC-Ge | Microwave assisted carburization | Hexagonal prism shape | — | 5 | 2.29 for ESA | [ | |
WC-MWCNTf | Microwave carburization | Nanotube structure | — | — | 1.1 for MORb | [ | |
WC-GCg | Indirect carbonization | 3D Spheris | — | 50.0-200.0 | 3.7 for ORRa | [ | |
WC-HMGh | Microwave irradiation | Hemisphere-shaped macroporosity | 58.7 | 3.0 | 2.4 for ORRb | [ | |
WC-NCi | Indirect carbonization | Macroporosity | — | — | 2.5 for ORRb | [ |
Fig. 17. (a) Schematic description for adsorbed CO on Pt and surface hydroxyls formed on WC with Pt/WC-C as the catalyst; (b) Schematic diagram of the preparation of the Pt@WC/OMC nanocomposite catalyst. Reproduced with permission from Ref. [200], Copyright 2015 Elsevier. (c) The MOR activity ratio between Pt/WC-C electrocatalysts with different surface areas and the commercial Pt/C.
Fig. 18. (a) ORR test curves of HMG/WC/Pt and Pt/C (1st and 2000th cycles); (b) Mass activity diagrams of HMG/WC/Pt and Pt/C; the CV curve of Pt/C (c) and HMG/WC/Pt (d) before and after 2000 cycles. Reproduced with permission from Ref. [191], Copyright 2016, Elsevier. a electrochemical surface area (m2 g-1), b limiting diffusion current (%), c mass activity (mA mgPt-1).
Fig. 19. (a) Comparison chart of the ECSA and current density of Pt/SiC and Pt/C single cells and (b) interface structure diagram of Pt/SiC and Pt/C electrodes before and after the AST test. Reproduced with permission from Ref. [223], Copyright 2017 Elsevier.
Functional carbide support | Catalyst synthesis method | T/oC | Pt particle size (nm) | ORR | Ref. | |
---|---|---|---|---|---|---|
pH | ECSAc/m2 gPt-1 | |||||
SiC | 1. Wood pyrolysis 2. Si and SiO2 calcination 3. Unreacted carbon separation 4. Acid washing | 1450 | — | 2.0 | 34d ; >80%e | [ |
TiC | — | — | 3.8 | 2.0 | 75d ; — | [ |
NbC | 1. ANOa + PVPb electrospinning 2. Calcination | 1100 | 3.1 | 13.0 | 43d ; 31%f | [ |
Table 9 Other functional carbides as the support for PEMFC electrocatalysts.
Functional carbide support | Catalyst synthesis method | T/oC | Pt particle size (nm) | ORR | Ref. | |
---|---|---|---|---|---|---|
pH | ECSAc/m2 gPt-1 | |||||
SiC | 1. Wood pyrolysis 2. Si and SiO2 calcination 3. Unreacted carbon separation 4. Acid washing | 1450 | — | 2.0 | 34d ; >80%e | [ |
TiC | — | — | 3.8 | 2.0 | 75d ; — | [ |
NbC | 1. ANOa + PVPb electrospinning 2. Calcination | 1100 | 3.1 | 13.0 | 43d ; 31%f | [ |
[1] |
T. Ioroi, Z. Siroma, S. i. Yamazaki, K. Yasuda , Adv. Energy Mater., 2019,9, 1801284.
DOI URL |
[2] |
X. Tang, D. Fang, L. Qu, D. Xu, X. Qin, B. Qin, W. Song, Z. Shao, B. Yi , Chin. J. Catal., 2019,40, 504-514.
DOI URL |
[3] |
F. Xie, Z. Shao, M. Hou, H. Yu, W. Song, S. Sun, L. Zhou, B. Yi , J. Energy Chem., 2019,36, 129-140.
DOI URL |
[4] | R. L. Borup, A. Kusoglu, K. C. Neyerlin, R. Mukundan, R. K. Ahluwalia, D. A. Cullen, K. L. More, A. Z. Weber, D. J. Myers , Curr. Opin. Electrochem., 2020,21, 192-200. |
[5] |
Y. Zhao, Y. Mao, W. Zhang, Y. Tang, P. Wang , Int. J. Hydrogen Energy, 2020,45, 23174-23200.
DOI URL |
[6] |
B. Randrianarizafy, P. Schott, M. Gerard, Y. Bultel , Energies, 2020,13, 2338.
DOI URL |
[7] |
Z. Ma, Z. P. Cano, A. Yu, Z. Chen, G. Jiang, X. Fu, L. Yang, T. Wu, Z. Bai, J. Lu , Angew. Chem.-Int. Ed., 2020,59, 18334-18348.
DOI URL |
[8] | A. Yuda, A. Ashok, A. Kumar , Catal. Rev., 2020, DOI: 10.1080/01614940.2020.1802811. |
[9] |
F. Lyu, M. Cao, A. Mahsud, Q. Zhang , J. Mater. Chem. A, 2020,8, 15445-15457.
DOI URL |
[10] |
M. Shao, Q. Chang, J. P. Dodelet, R. Chenitz , Chem. Rev., 2016,116, 3594-3657.
DOI URL PMID |
[11] |
M. S. Garapati, R. Sundara , Int. J. Hydrogen Energy, 2019,44, 10951-10963.
DOI URL |
[12] |
P. Li, W. Chen , Chin. J. Catal., 2019,40, 4-22.
DOI URL |
[13] |
X. He, F. Yin, H. Wang, B. Chen, G. Li , Chin. J. Catal., 2018,39, 207-227.
DOI URL |
[14] |
J. Kong, W. Cheng , Chin. J. Catal., 2017,38, 951-969.
DOI URL |
[15] |
J. Zhang, S. Lu, Y. Xiang, S. P. Jiang , ChemSusChem, 2020,13, 2484-2502.
DOI URL PMID |
[16] |
B. Hasa, E. Martino, J. Vakros, G. Trakakis, C. Galiotis, A. Katsaounis , ChemElectroChem, 2019,6, 4970-4979.
DOI URL |
[17] |
T. W. van Deelen, C. Hernández Mejía, K. P. de Jong , Nat. Catal., 2019,2, 955-970.
DOI URL |
[18] |
Y. C. Park, H. Tokiwa, K. Kakinuma, M. Watanabe, M. Uchida , J. Power Sources, 2016,315, 179-191.
DOI URL |
[19] |
X. Chen, F. He, Y. Shen, Y. Yang, H. Mei, S. Liu, T. Mori, Y. Zhang , Chem. Eur. J., 2017,23, 14597-14603.
DOI URL PMID |
[20] |
F. Zhu, L. Luo, A. Wu, C. Wang, X. Cheng, S. Shen, C. Ke, H. Yang, J. Zhang , ACS Appl. Mater. Interfaces, 2020,12, 26076-26083.
DOI URL PMID |
[21] |
A. Brouzgou, S. Song, Z. X. Liang, P. Tsiakaras , Catalysts, 2016,6, 159.
DOI URL |
[22] |
J. Gacia-Cardona, I. Sirés, F. Alcaide, E. Brillas, F. Centellas, P. L. Cabot , Int. J. Hydrogen Energy, 2020,45, 20582-20593.
DOI URL |
[23] | Z. Qiao, S. Hwang, X. Li, C. Wang, W. Samarakoon, S. Karakalos, D. Li, M. Chen, Y. He, M. Wang, Z. Liu, G. Wang, H. Zhou, Z. Feng, D. Su, J. S. Spendelow, G. Wu , Energy Environ. Sci., 2019,12, 2830-2841. |
[24] | E. Arici, B. Y. Kaplan, A. M. Mert, S. Alkan Gursel, S. Kinayyigit , Int. J. Hydrogen Energy, 2019,44, 14175-14183. |
[25] | M. V. Martínez-Huerta, M. J. Lázaro , Catal. Today, 2017,285, 3-12. |
[26] | I. Udin, M. S. Shaharun, A. Naeem, M. A. Alotaibi, A. I. Alharthi, M. A. Bakht, Q. Nasir , Ceram. Int., 2020,46, 18446-18452. |
[27] |
K. Cheng, K. Zhu, S. Liu, M. Li, J. Huang, L. Yu, Z. Xia, C. Zhu, X. Liu, W. Li, W. Lu, F. Wei, Y. Zhou, W. Zheng, S. Mu , ACS Appl. Mater. Interfaces, 2018,10, 21306-21312.
URL PMID |
[28] | H. Li, N. Cheng, Y. Zheng, X. Zhang, H. Lv, D. He, M. Pan, F. Kleitz, S. Z. Qiao, S. Mu , Adv. Energy Mater., 2013,3, 1176-1179. |
[29] |
K. D. Yang, C. W. Lee, J. H. Jang, T. R. Ha, K. T. Nam , Nanotechnology, 2017,28, 352001.
URL PMID |
[30] | F. Yang, D. Deng, X. Pan, Q. Fu, X. Bao , Natl. Sci. Rev., 2015,2, 183-201. |
[31] | G. Zhang, Y. S. Feng, W. T. Lu, D. He, C. Y. Wang, Y. K. Li, X. Y. Wang, F. F. Cao , ACS Catal., 2018,8, 5431-5441. |
[32] |
H. Li, J. Xiao, Q. Fu, X. Bao , Proc. Natl. Acad. Sci. USA, 2017,114, 5930-5934.
URL PMID |
[33] | K. Huang, Z. Zhao, H. Du, P. Du, H. Wang, R. Wang, S. Lin, H. Wei, Y. Long, M. Lei, W. Guo, H. Wu , ACS Sustain. Chem. Eng., 2020,8, 6905-6913. |
[34] | Z. Bai, W. Tu, J. Zhu, J. Li, Z. Deng, D. Li, H. Tang , Polymers, 2019,11, 576. |
[35] | S. Song, C. He, J. Liu, Y. Wang, A. Brouzgou, P. Tsiakaras, Appl. Catal. B, 2012,119-120, 227-233. |
[36] | J. Liu, G. Lan, Y. Qiu, X. Wang, Y. Li , Chin. J. Catal., 2018,39, 1664-1671. |
[37] | N. Hu, X. Y. Li, S. M. Liu, Z. Wang, X. K. He, Y. X. Hou, Y. X. Wang, Z. Deng, L. H. Chen, B. L. Su , Chin. J. Catal., 2020,41, 1081-1090. |
[38] | A. Ali, C. Zhao , Chin. J. Catal., 2020,41, 1174-1185. |
[39] | Z. P. Hu, J. T. Ren, D. Yang, Z. Wang, Z. Y. Yuan , Chin. J. Catal., 2019,40, 1385-1394. |
[40] | J. Xing, F. Lin, L. Huang, Y. Si, Y. Wang, L. Jiao , Chin. J. Catal., 2019,40, 1352-1359. |
[41] | K. Cheng, Z. Kou, J. Zhang, M. Jiang, H. Wu, L. Hu, X. Yang, M. Pan, S. Mu , J. Mater. Chem. A, 2015,3, 14007-14014. |
[42] | T. Asset, N. Job, Y. Busby, A. Crisci, V. Martin, V. Stergiopoulos, C. Bonnaud, A. Serov, P. Atanassov, R. Chattot, L. Dubau, F. Maillard , ACS Catal., 2018,8, 893-903. |
[43] | E. Antolini, Appl. Catal. B, 2012, 123-124, 52-68. |
[44] | M. Yaldagard, M. Jahanshahi, N. Seghatoleslami , World J. Nano Sci. Eng., 2013,3, 121-153. |
[45] |
N. M. Julkapli, S. Bagheri , Int. J. Hydrogen Energy, 2015,40, 948-979.
DOI URL |
[46] |
X. Mao, G. C. Rutledge, T. A. Hatton , Nano Today, 2014,9, 405-432.
DOI URL |
[47] | S. Jayabal, G. Saranya, D. Geng, L. Y. Lin, X. Meng , J. Mater. Chem. A, 2020,8, 9420-9446. |
[48] |
J. Lai, A. Nsabimana, R. Luque, G. Xu , Joule, 2018,2, 76-93.
DOI URL |
[49] | S. Cai, R. Wang, W. M. Yourey, J. Li, H. Zhang, H. Tang , Sci. Bull., 2019,64, 968-975. |
[50] | K. Huang, R. Wang, S. Zhao, P. Du, H. Wang, H. Wei, Y. Long, B. Deng, M. Lei, B. Ge, H. Gou, R. Zhang, H. Wu , Energy Storage Mater., 2020,29, 156-162. |
[51] | H. Wu, T. Peng, Z. Kou, J. Zhang, K. Cheng, D. He, M. Pan, S. Mu , Chin. J. Catal., 2015,36, 490-495. |
[52] | D. He, H. Tang, Z. Kou, M. Pan, X. Sun, J. Zhang, S. Mu , Adv. Mater., 2017,29, 1601741. |
[53] | Y. Wang, L. Zou, Q. Huang, Z. Zou, H. Yang , Int. J. Hydrogen Energy, 2017,42, 26695-26703. |
[54] | H. Jin, J. Li, L. Gao, F. Chen, H. Zhang, Q. Liu , Int. J. Hydrogen Energy, 2016,41, 9204-9210. |
[55] | Z. Liang, H. Zheng, R. Cao , ChemElectroChem, 2019,6, 2600-2614. |
[56] | S. Q. Song, Y. R. Liang, Z. H. Li, Y. Wang, R. W. Fu, D. C. Wu, P. Tsiakaras , Appl. Catal. B, 2010,98, 132-137. |
[57] |
S. Ott, A. Orfanidi, H. Schmies, B. Anke, H. N. Nong, J. Hubner, U. Gernert, M. Gliech, M. Lerch, P. Strasser , Nat. Mater., 2020,19, 77-85.
DOI URL PMID |
[58] | A. Seifi, A. R. Bahramian, A. Sharif , J. Energy Storage, 2016,7, 195-203. |
[59] | C. He, Y. Liang, R. Fu, D. Wu, S. Song, R. Cai , J. Mater. Chem., 2011,21, 16357. |
[60] | K. Wang, H. Chen, X. Zhang, Y. Tong, S. Song, P. Tsiakaras, Y. Wang , Appl. Catal. B, 2020,264, 118468. |
[61] | Z. Wang, X. Yao, Y. Kang, L. Miao, D. Xia, L. Gan , Adv. Func. Mater., 2019,29, 1902987. |
[62] |
H. Kuang, Y. Cheng, C. Q. Cui, S. P. Jiang , J. Nanosci. Nanotechnol., 2020,20, 2736-2745.
DOI URL PMID |
[63] | S. Bong, D. Han , Electroanalysis, 2019,32, 104-111. |
[64] | M. Tavakkoli, E. Flahaut, P. Peljo, J. Sainio, F. Davodi, E. V. Lobiak, K. Mustonen, E. I. Kauppinen , ACS Catal., 2020,10, 4647-4658. |
[65] | L. Tian, D. Ji, S. Zhang, X. He, S. Ramakrishna, Q. Zhang , Small, 2020,16, 2001743. |
[66] | L. M. Zhang, X. L. Sui, L. Zhao, G. S. Huang, D. M. Gu, Z. B. Wang , Carbon, 2017,121, 518-526. |
[67] | M. S. Çögenli, A. Bayrakçeken Yurtcan , Int. J. Hydrogen Energy, 2020,45, 650-666. |
[68] | F. Meng, L. Li, Z. Wu, H. Zhong, J. Li, J. Yan , Chin. J. Catal., 2014,35, 877-883. |
[69] | Y. Zhou, X. Hu, S. Guo, C. Yu, S. Zhong, X. Liu , Electrochim. Acta, 2018,264, 12-19. |
[70] | M. Zeng, C. Y. Wang, L. Su, Z. H. Luo, J. K. Wu, Y. Yi , ChemistrySelect, 2020,5, 9296-9300. |
[71] | M. Ouattara-Brigaudet, S. Berthon-Fabry, C. Beauger, M. Chatenet, N. Job, M. Sennour, P. Achard , Int. J. Hydrogen Energy, 2012,37, 9742-9757. |
[72] | X. Tang, Y. Zeng, L. Cao, L. Yang, Z. Wang, D. Fang, Y. Gao, Z. Shao, B. Yi , J. Mater. Chem. A, 2018,6, 15074-15082. |
[73] | S. Sepp, K. Vaarmets, J. Nerut, I. Tallo, E. Tee, H. Kurig, J. Aruväli, R. Kanarbik, E. Lust , J. Solid State Electrochem., 2016,21, 1035-1043. |
[74] | Q. L. Zhu, W. Xia, L. R. Zheng, R. Zou, Z. Liu, Q. Xu , ACS Energy Lett., 2017,2, 504-511. |
[75] | Y. Li, D. Wang, H. Xie, C. Zhang , ChemistrySelect, 2019,4, 12601-12607. |
[76] |
L. Nan, W. Yue , ACS Appl. Mater. Interfaces, 2018,10, 26213-26221.
DOI URL PMID |
[77] | W. Zhao, Y. Ye, W. Jiang, J. Li, H. Tang, J. Hu, L. Du, Z. Cui, S. Liao , J. Mater. Chem. A, 2020,8, 15822-15828. |
[78] | S. Song, S. Yin, Z. Li, P. K. Shen, R. Fu, D. Wu , J. Power Sources, 2010,195, 1946-1949. |
[79] | J. J. Arroyo-Gómez, D. Barrera, R. M. Castagna, J. M. Sieben, A. E. Alvarez, M. M. E. Duarte, K. Sapag , ChemCatChem, 2019,11, 3451-3464. |
[80] |
A. Elsheikh, V. L. Martins, J. McGregor , Energy Procedia, 2018,151, 79-83.
DOI URL |
[81] | R. Zhang, T. Min, L. Chen, Q. Kang, Y. L. He, W. Q. Tao , Appl. Energy, 2019,253, 113590. |
[82] | M. Wei, M. Jiang, X. Liu, M. Wang, S. Mu , J. Power Sources, 2016,327, 384-393. |
[83] |
C. Zhu, H. Li, S. Fu, D. Du, Y. Lin , Chem. Soc. Rev., 2016,45, 517-531.
DOI URL PMID |
[84] |
I. C. Gerber, P. Serp , Chem. Rev., 2019,120, 1250-1349.
DOI URL PMID |
[85] | A. Mishra, V. K. Singh, T. Mohanty , J. Mater. Sci., 2017,52, 7677-7687. |
[86] | M. Kiani, J. Zhang, Y. Luo, C. Jiang, J. Fan, G. Wang, J. Chen, R. Wang , J. Energy Chem., 2018,27, 1124-1139. |
[87] | H. Tang, Y. Zeng, Y. Zeng, R. Wang, S. Cai, C. Liao, H. Cai, X. Lu, P. Tsiakaras , Appl. Catal. B, 2017,202, 550-556. |
[88] | Y. Cao, S. Mao, M. Li, Y. Chen, Y. Wang , ACS Catal., 2017,7, 8090-8112. |
[89] | J. Liang, X. Zhang, L. Jing, H. Yang , Chin. J. Catal., 2017,38, 1252-1260. |
[90] |
K. Huang, L. Zhang, T. Xu, H. Wei, R. Zhang, X. Zhang, B. Ge, M. Lei, J. Y. Ma, L. M. Liu, H. Wu , Nat. Commun., 2019,10, 606.
URL PMID |
[91] | H. Zhao, C. C. Weng, J. T. Ren, L. Ge, Y. P. Liu, Z. Y. Yuan , Chin. J. Catal., 2020,41, 259-267. |
[92] | H. Li, D. Liu, X. Zhu, D. Qu, Z. Xie, J. Li, H. Tang, D. Zheng, D. Qu , Nano Energy, 2020,73, 104763. |
[93] | J. A. Prithi, N. Rajalakshmi, G. Ranga Rao , Int. J. Hydrogen Energy, 2018,43, 4716-4725. |
[94] | C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, Z. Liu , Adv. Mater., 2011,23, 1020-1024. |
[95] | H. Jiang, L. Liu, K. Zhao, Z. Liu, X. Zhang, S. Hu , Electrochim. Acta, 2020,337, 135758. |
[96] | J. Xu, B. Liu , Appl. Surf. Sci., 2020,500, 144020. |
[97] | X. Jiang, J. Wang, T. Huang, G. Fu, Y. Tang, X. Qiu, J. Zhou, J. M. Lee , J. Mater. Chem. A, 2019,7, 26243-26249. |
[98] | Q. Wang, Z. Zhang, M. Wang, J. Li, J. Fang, Y. Lai , Chin. J. Catal., 2018,39, 1210-1218. |
[99] | K. K. Karuppanan, Appu V. Raghu, M. K. Panthalingal, V. Thiruvenkatam, K. P. B. Pullithadathil , Sustain. Energy Fuels, 2019,3, 996-1011. |
[100] |
J. Liu, W. Li, R. Cheng, Q. Wu, J. Zhao, D. He, S. Mu , Langmuir, 2019,35, 2580-2586.
DOI URL PMID |
[101] |
L. Zhao, Q. Wang, X. Zhang, C. Deng, Z. Li, Y. Lei, M. Zhu , ACS Appl. Mater. Interfaces, 2018,10, 35888-35895.
DOI URL PMID |
[102] |
L. Warczinski, B. Hu, T. Eckhard, B. Peng, M. Muhler, C. Hättig , Phys. Chem. Chem. Phys., 2020,22, 21317-21325.
DOI URL PMID |
[103] | F. Han, Z. Liu, J. Jia, J. Ai, L. Liu, J. Liu, Q. D. Wang , Mater. Chem. Phys., 2019,237, 121881. |
[104] | E. Haque, A. Zavabeti, N. Uddin, Y. Wang, M. A. Rahim, N. Syed, K. Xu, A. Jannat, F. Haque, B. Y. Zhang, M. A. Shoaib, S. Shamsuddin, M. Nurunnabi, A. I. Minett, J. Z. Ou, A. T. Harris , Chem. Mater., 2020,32, 1384-1392. |
[105] | S. Shanmugam, T. Osaka , Chem. Commun., 2011,47, 4463-4465. |
[106] | K. Wan, Z. P. Yu, Z. X. Liang , Catalysts, 2015,5, 1034-1045. |
[107] | G. Chen, T. Wang, P. Liu, Z. Liao, H. Zhong, G. Wang, P. Zhang, M. Yu, E. Zschech, M. Chen, J. Zhang, X. Feng , Energy Environ. Sci., 2020,13, 2849-2855. |
[108] | J. Li, S. You, M. Liu, P. Zhang, Y. Dai, Y. Yu, N. Ren, J. Zou , Appl. Catal. B, 2020,265, 118574. |
[109] | D. S. Geng, Y. Chen, Y. G. Chen, Y. L. Li, R. Y. Li, X. L. Sun, S. Y. Ye, S. Knights , Energy Environ. Sci., 2011,4, 760-764. |
[110] | X. Q. Wang, J. S. Lee, Q. Zhu, J. Liu, Y. Wang, S. Dai , Chem. Mater., 2010,22, 2178-2180. |
[111] | N. Karthikeyan, B. P. Vinayan, M. Rajesh, K. Balaji, A. K. Subramani, S. Ramaprabhu , Fuel Cells, 2015,15, 278-287. |
[112] | E. N. Gribov, A. N. Kuznetsov, V. A. Golovin, D. V. Krasnikov, V. L. Kuznetsov , Mater. Renew. Sustain. Energy, 2019,8, 7. |
[113] | E. Antolini , Renew. Sust. Energ. Rev., 2016,58, 34-51. |
[114] | Y. Wei, X. Zhang, Z. Luo, D. Tang, C. Chen, T. Zhang, Z. Xie , Nano-Micro Lett., 2017,9, 28. |
[115] | H. Jin, T. Xiong, Y. Li, X. Xu, M. Li, Y. Wang , Chem. Commun., 2014,50, 12637-12640. |
[116] | C. E. Thaw, A. Villa, G. M. Veith, L. Prati , ChemCatChem, 2015,7, 1338-1346. |
[117] | K. Jukk, N. Kongi, P. Rauwel, L. Matisen, K. Tammeveski , Electrocatalysis, 2016,7, 428-440. |
[118] | X. Sun, P. Han, B. Li, S. Mao, T. Liu, S. Ali, Z. Lian, D. Su , Chem. Commun., 2018,54, 864-875. |
[119] | K. Vaarmets, J. Nerut, S. Sepp, R. Kanarbik, E. Lust , J. Electrochem. Soc., 2017,164, F338-F346. |
[120] | C. Park, E. Lee, G. Lee, Y. Tak , Appl. Catal. B, 2020,268, 118414. |
[121] | L. Guo, W. J. Jiang, Y. Zhang, J. S. Hu, Z. D. Wei, L. J. Wan , ACS Catal., 2015,5, 2903-2909. |
[122] | M. Qiao, Y. Wang, X. Mamat, A. Chen, G. Zou, L. Li, G. Hu, S. Zhang, X. Hu, D. Voiry , ChemSusChem, 2020,13, 741-748. |
[123] | L. Zhang, K. D. Davis, X. Sun , Energy Environ. Sci., 2019,12, 492-517. |
[124] | M. Yoo, Y. S. Yu, H. Ha, S. Lee, J. S. Choi, S. Oh, E. Kang, H. Choi, H. An, K. S. Lee, J. Y. Park, R. Celestre, M. A. Marcus, K. Nowrouzi, D. Taube, D. A. Shapiro, W. Jung, C. Kim, H. Y. Kim , Energy Environ. Sci., 2020,13, 1231-1239. |
[125] | J. Wu, L. Xiong, B. Zhao, M. Liu, L. Huang , Small Methods, 2020,4, 1900540. |
[126] | B. Han, Y. Guo, Y. Huang, W. Xi, J. Xu, J. Luo, H. Qi, Y. Ren, X. Liu, B. Qiao, T. Zhang , Angew. Chem.-Int. Ed., 2020,59, 11824-11829. |
[127] | K. Huang, R. Wang, H. Wu, H. Wang, X. He, H. Wei, S. Wang, R. Zhang, M. Lei, W. Guo, B. Ge, H. Wu , J. Mater. Chem. A, 2019,7, 25779-25784. |
[128] | S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M. N. Banis, R. Li, S. Ye, S. Knights, G. A. Botton, T. K. Sham, X. Sun , Sci. Rep., 2013,3, 1775. |
[129] |
J. Xu, R. Li, R. Zeng, X. Yan, Q. Zhao, J. Ba, W. Luo, D. Meng , ACS Appl. Mater. Interfaces, 2020,12, 38106-38112.
DOI URL PMID |
[130] | P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su, S. Guo , Nano Energy, 2019,56, 127-137. |
[131] | Y. Q. Su, Y. Wang, J. X. Liu, I. A. W. Filot, K. Alexopoulos, L. Zhang, V. Muravev, B. Zijlstra, D. G. Vlachos, E. J. M. Hensen , ACS Catal., 2019,9, 3289-3297. |
[132] | D. Kunwar, S. Zhou, A. DeLaRiva, E. J. Peterson, H. Xiong, X. I. Pereira-Hernández, S. C. Purdy, R. ter Veen, H. H. Brongersma, J. T. Miller, H. Hashiguchi, L. Kovarik, S. Lin, H. Guo, Y. Wang, A. K. Datye , ACS Catal., 2019,9, 3978-3990. |
[133] | X. Li, X. Yang, J. Zhang, Y. Huang, B. Liu , ACS Catal., 2019,9, 2521-2531. |
[134] |
M. J. Hulsey, B. Zhang, Z. Ma, H. Asakura, D. A. Do, W. Chen, T. Tanaka, P. Zhang, Z. Wu, N. Yan , Nat. Commun., 2019,10, 1330.
DOI URL PMID |
[135] |
E. D. Boyes, A. P. LaGrow, M. R. Ward, R. W. Mitchell, P. L. Gai , Acc. Chem. Res., 2020,53, 390-399.
URL PMID |
[136] |
M. González-Hernández, E. Antolini, J. Perez , Int. J. Hydrogen Energy, 2020,45, 5276-5284.
DOI URL |
[137] | J. Ding, L. Ma, M. Gan, W. Zhan, C. Zhou, D. Wei, S. Han, J. Shen, F. Xie, X. Zhong , Int. J. Hydrogen Energy, 2019,44, 30388-30400. |
[138] | A. C. Johansson, J. V. Larsen, M. A. Verheijen, K. B. Haugshøj, H. F. Clausen, W. M. M. Kessels, L. H. Christensen, E. V. Thomsen , J. Catal., 2014,311, 481-486. |
[139] |
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S. Z. Qiao , Chem. Rev., 2018,118, 6337-6408.
URL PMID |
[140] | B. Zhang, D. S. Su , ChemCatChem, 2015,7, 3639-3645. |
[141] | Y. N. Chen, X. Zhang, Z. Zhou , Small Methods, 2019,3, 1900050. |
[142] | Z. Tong, M. Wen, C. Lv, Q. Zhang, Y. Yin, X. Liu, Y. Li, C. Liao, Z. Wu, D. D. Dionysiou , Appl. Catal. B, 2020,269, 118764. |
[143] | Y. Miao, J. Zheng, Y. Liu, N. Xiang, Y. Li, X. Han, Z. Huang , Catal. Lett., 2020,150, 3243-3255. |
[144] | D. Xiao, J. Ma, C. Chen, Q. Luo, J. Ma, L. Zheng, X. Zuo , Mater. Res. Bull., 2018,105, 184-191. |
[145] | C. A. Trujillo, N. T. Ramírez-Marquez, J. S. Valencia-Rios , Thermochim. Acta, 2020,689, 178651. |
[146] | S. Andreoli, S. Eser , Carbon, 2020,168, 362-371. |
[147] |
H. Ogihara, T. Maezuru, Y. Ogishima, Y. Inami, M. Saito, S. Iguchi, I. Yamanaka , ACS Omega, 2020,5, 19453-19463.
DOI URL PMID |
[148] | J. R. C. Salgado, R. G. Duarte, L. M. Ilharco, A. M. B. do Rego, A. M. Ferraria, M. G. S. Ferreira , Appl. Catal. B, 2011,102, 496-504. |
[149] | S. Liu, F. Dong, Z. Tang, Q. Wang , Int. J. Hydrogen Energy, 2020,45, 30547-30558. |
[150] | S. H. Liu, J. R. Wu , Int. J. Hydrogen Energy, 2012,37, 16994-17001. |
[151] |
B. T. Sneed, D. A. Cullen, K. S. Reeves, O. E. Dyck, D. A. Langlois, R. Mukundan, R. L. Borup, K. L. More , ACS Appl. Mater. Interfaces, 2017,9, 29839-29848.
DOI URL PMID |
[152] | L. Castanheira, W. O. Silva, F. H. B. Lima, A. Crisci, L. Dubau, F. Maillard , ACS Catal., 2015,5, 2184-2194. |
[153] | W. Chen, D. Jiang, M. Zhu, T. Shi, H. Li, K. Wang , J. Alloys Compd., 2018,741, 1203-1211. |
[154] | B. H. Suryanto, S. Chen, J. Duan, C. Zhao , ACS Appl. Mater. Interfaces, 2016,8, 35513-35522. |
[155] | J. H. Kim, J. Y. Cheon, T. J. Shin, J. Y. Park, S. H. Joo , Carbon, 2016,101, 449-457. |
[156] | L. Calvillo, V. Celorrio, R. Moliner, M. J. Lazaro , Mater. Chem. Phys., 2011,127, 335-341. |
[157] | C. X. He, S. Q. Song, J. C. Liu, V. Maragou, P. Tsiakaras , J. Power Sources, 2010,195, 7409-7414. |
[158] | W. Xiong, B. A. T. Mehrabadi, S. G. Karakolos, R. D. White, A. Shakouri, P. Kasak, S. J. Zaidi, J. W. Weidner, J. R. Regalbuto, H. Colon-Mercado, J. R. Monnier , ACS Appl. Energy Mater., 2020,3, 5487-5496. |
[159] | S. A. Grigoriev, V. N. Fateev, A. S. Pushkarev, I. V. Pushkareva, N. A. Ivanova, V. N. Kalinichenko, M. Yu Presnyakov, X. Wei , Materials, 2018,11, 1405. |
[160] | X. Ning, X. Zhou, J. Luo, L. Ma, X. Xu, L. Zhan , Electrochim. Acta, 2019,319, 129-137. |
[161] | E. Montiel Macias, A. M. Valenzuela-Muñiz, G. Alonso-Núñez, M. H. Farías Sánchez, R. Gauvin, Y. Verde Gómez , Diam. Relat. Mater., 2020,103, 107671. |
[162] | K. Ham, S. Chung, J. Lee , J. Power Sources, 2020,450, 227650. |
[163] | D. K. Perivoliotis, Y. Sato, K. Suenaga, N. Tagmatarchis , ACS Appl. Energy Mater., 2018,1, 3869-3880. |
[164] | M. A. Hoque, F. M. Hassan, M. H. Seo, J. Y. Choi, M. Pritzker, S. Knights, S. Ye, Z. Chen , Nano Energy, 2016,19, 27-38. |
[165] | M. A. Hoque, F. M. Hassan, A. M. Jauhar, G. Jiang, M. Pritzker, J. Y. Choi, S. Knights, S. Ye, Z. Chen , ACS Sustain. Chem. Eng., 2017,6, 93-98. |
[166] | J. J. Fan, Y. J. Fan, R. X. Wang, S. Xiang, H. G. Tang, S. G. Sun , J. Mater. Chem. A, 2017,5, 19467-19475. |
[167] |
O. L. Li, Z. Shi, H. Lee, T. Ishizaki , Sci. Rep., 2019,9, 12704.
DOI URL PMID |
[168] | Y. Li, S. Lin, X. Ren, H. Mi, P. Zhang, L. Sun, L. Deng, Y. Gao , Electrochim. Acta, 2017,253, 445-454. |
[169] | M. Sahoo, S. Ramaprabhu , Energy, 2017,119, 1075-1083. |
[170] | D. Chen, Z. He, S. E. Pei, L. A. Huang, H. Shao, Y. Jin, J. Wang , J. Alloys Compd., 2019,785, 781-788. |
[171] | X. Tan, J. Zhang, X. Wu, Y. Wang, M. Li, Z. Shi , RSC Adv., 2018,8, 33688-33694. |
[172] |
M. An, L. Du, C. Du, Y. Sun, Y. Wang, G. Yin, Y. Gao , Electrochim. Acta, 2018,285, 202-213.
DOI URL |
[173] | K. Yu, Y. Lin, j. Fan, Q. Li, P. Shi, Q. Xu, Y. Min , Catalysts, 2019,9, 114. |
[174] | X. Zhang , Int. J. Electrochem. Sci., 2019,14, 10931-10942. |
[175] | M. K. Sahoo, R. Shanmugam, E. Umeshbabu, G. Ranga Rao , ChemistrySelect, 2020,5, 7205-7216. |
[176] | E. R. Hamo, P. Tereshchuk, M. Zysler, D. Zitoun, A. Natan, B. A. Rosen , J. Electrochem. Soc., 2019,166, F1292-F1300. |
[177] | H. Na, H. Choi, J. W. Oh, D. B. Kim, Y. S. Cho , Green Chem., 2020,22, 2028-2035. |
[178] | W. Zhu, A. Ignaszak, C. Song, R. Baker, R. Hui, J. Zhang, F. Nan, G. Botton, S. Ye, S. Campbell , Electrochim. Acta, 2012,61, 198-206. |
[179] | Z. Li, B. Li, Z. Liu, Z. Liu, D. Li , RSC Adv., 2015,5, 106245-106251. |
[180] | N. R. Elezović, B. M. Babić, L. Gajić-Krstajić, P. Ercius, V. R. Radmilović, N. V. Krstajić, L. M. Vračar , Electrochim. Acta, 2012,69, 239-246. |
[181] | Y. Wang, S. Q. Song, P. K. Shen, C. X. Guo, C. M. Li , J. Mater. Chem., 2009,19, 6149-6153. |
[182] | Z. Yan, F. Li, J. Xie, X. Miu , RSC Adv., 2015,5, 6790-6796. |
[183] | N. E. Souza, J. L. Bott-Neto, T. A. Rocha, G. C. da Silva, E. Teixeira-Neto, E. R. Gonzalez, E. A. Ticianelli , Electrochim. Acta, 2018,265, 523-531. |
[184] | Y. Zhou, X. Li, C. Yu, X. Hu, Y. Yin, S. Guo, S. Zhong , ACS Appl. Energy Mater., 2019,2, 8459-8463. |
[185] | J. L. Bott-Neto, W. Beck, L. C. Varanda, E. A. Ticianelli , Int. J. Hydrogen Energy, 2017,42, 20677-20688. |
[186] | S. M. Brkovic, M. P. Marceta Kaninski, P. Z. Lausevic, A. B. Saponjic, A. M. Radulovic, A. A. Rakic, I. A. Pasti, V. М. Nikolic , Int. J. Hydrogen Energy, 2020,45, 13929-13938. |
[187] | D. Göhl, A. M. Mingers, S. Geiger, M. Schalenbach, S. Cherevko, J. Knossalla, D. Jalalpoor, F. Schüth, K. J. J. Mayrhofer, M. Ledendecker , Electrochim. Acta, 2018,270, 70-76. |
[188] | Y. Wang, J. Su, L. Dong, P. Zhao, Y. Zhang, W. Wang, S. Jia, J. Zang , ChemCatChem, 2017,9, 3982-3988. |
[189] | Y. Sohn, J. Y. Jung, P. Kim , Korean J. Chem. Eng., 2017,34, 2162-2168. |
[190] | X. Lang, M. Shi, Y. Jiang, H. Chen, C. Ma , RSC Adv., 2016,6, 13873-13880. |
[191] | Z. Li, Z. Liu, B. Li, Z. Liu, D. Li, H. Wang, Q. Li , Electrochim. Acta, 2016,221, 31-40. |
[192] | K. Huang, K. Bi, J. C. Xu, C. Liang, S. Lin, W. J. Wang, T. Z. Yang, Y. X. Du, R. Zhang, H. J. Yang, D. Y. Fan, Y. G. Wang, M. Lei , Electrochim. Acta, 2015,174, 172-177. |
[193] | G. García, O. Guillén-Villafuerte, J. L. Rodríguez, M. C. Arévalo, E. Pastor , Int. J. Hydrogen Energy, 2016,41, 19664-19673. |
[194] | R. J¨ager, E. H¨ark, P. E. Kasatkin, P. Pikma, U. Joost, P. Paiste, J. Aruv¨ali, T. Kallio, H. Jiang, E. Lust , J. Electrochem. Soc., 2017,164, F448-F453. |
[195] | G. Singla, K. Singh, O. P. Pandey , Mater. Chem. Phys., 2017,186, 19-28. |
[196] | R. Ganesan, D. J. Ham, J. S. Lee , Electrochem. Commun., 2007,9, 2576-2579. |
[197] | Y. Wang, S. Q. Song, V. Maragou, P. K. Shen, P. Tsiakaras , Appl. Catal. B, 2009,89, 223-228. |
[198] | Y. Wang, C. He, A. Brouzgou, Y. Liang, R. Fu, D. Wu, P. Tsiakaras, S. Song , J. Power Sources, 2012,200, 8-13. |
[199] | K. Wang, Y. Wang, Z. Liang, Y. Liang, D. Wu, S. Song, P. Tsiakaras , Appl. Catal. B, 2014,147, 518-525. |
[200] | K. Wang, Z. Pan, F. Tzorbatzoglou, Y. Zhang, Y. Wang, T. Panagiotis, S. Song , Appl. Catal. B, 2015,166, 224-230. |
[201] | H. Zheng, Z. Chen, Y. Li, C. A. Ma , Electrochim. Acta, 2013,108, 486-490. |
[202] | M. Rahsepar, M. Pakshir, P. Nikolaev, A. Safavi, K. Palanisamy, H. Kim , Appl. Catal. B, 2012,127, 265-272. |
[203] | C. He, J. Tao, Y. Ke, Y. Qiu , RSC Adv., 2015,5, 66695-66703. |
[204] | M. Rahsepar, M. Pakshir, P. Nikolaev, Y. Piao, H. Kim , Int. J. Hydrogen Energy, 2014,39, 15706-15717. |
[205] | S. Xue, W. Wang, J. Song, P. Tao, P. Wang, Z. Lei , J. Taiwan Inst. Chem. Eng., 2018,84, 93-100. |
[206] | Z. Yang, M. Chen, M. Xia, M. Wang, X. Wang , Appl. Surf. Sci., 2019,487, 655-663. |
[207] | J. P. Bosco, K. Sasaki, M. Sadakane, W. Ueda, J. G. G. Chen , Chem. Mater., 2010,22, 966-973. |
[208] | Z. Jiang, J. Yu, T. Huang, M. Sun , Polymers, 2018,10, 1397. |
[209] | J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu, X. Guo , Adv. Mater., 2020,32, 1905679. |
[210] | L. M. Rivera-Gavidia, M. Luis-Sunga, J. L. Rodríguez, E. Pastor, G. García , Int. J. Hydrogen Energy, 2020,45, 20673-20678. |
[211] | J. Zhang, Y. She , Front. Chem. Sci. Eng., 2020,14, 1052-1064. |
[212] | S. Han, L. Ma, M. Gan, J. Shen, D. Wei, W. Zhan, J. Ding, C. Zhou, X. Zhong , Appl. Surf. Sci., 2020,505, 144652. |
[213] | O. Lori, S. Gonen, L. Elbaz , J. Electrochem. Soc., 2017,164, F825-F830. |
[214] | S. Saha, J. A. Cabrera Rodas, S. Tan, D. Li , J. Power Sources, 2018,378, 742-749. |
[215] | S. Sepp, K. Vaarmets, J. Nerut, I. Tallo, E. Tee, H. Kurig, J. Aruväli, R. Kanarbik, E. Lust , Electrochim. Acta, 2016,203, 221-229. |
[216] | Z. Yan, J. Xie, P.K. Shen , J. Power Sources, 2015,286, 239-246. |
[217] | A. M. Gómez-Marín, J. L. Bott-Neto, J. B. Souza, T. L. Silva, W. Beck, L. C. Varanda, E. A. Ticianelli , ChemElectroChem, 2016,3, 1570-1579. |
[218] | S. Saha, B. Martin, B. Leonard, D. Li , J. Mater. Chem. A, 2016,4, 9253-9265. |
[219] | D. Göhl, H. Rue , M. Pander, A. R. Zeradjanin, K. J. J. Mayrhofer, J. M. Schneider, A. Erbe, M. Ledendecker , J. Electrochem. Soc., 2020,167, 021501. |
[220] | C. He, J. Tao, G. He, P. K. Shen , Electrochim. Acta, 2016,216, 295-303. |
[221] |
C. B. Krishnamurthy, O. Lori, L. Elbaz, I. Grinberg , J. Phys. Chem. Lett., 2018,9, 2229-2234.
DOI URL PMID |
[222] | J. Lobato, H. Zamora, J. Plaza, M. A. Rodrigo , ChemCatChem, 2016,8, 848-854. |
[223] | S. M. Andersen, M. J. Larsen , J. Electroanal. Chem., 2017,791, 175-184. |
[224] | M. Chiwata, K. Kakinuma, M. Wakisaka, M. Uchida, S. Deki, M. Watanabe, H. Uchida , Catalysts, 2015,5, 966-980. |
[225] | G. Zhao, T. Zhao, X. Yan, L. Zeng, J. Xu , Energy Tech., 2016,4, 1064-1070. |
[226] | Y. Nabil, S. Cavaliere, I. A. Harkness, J. D. B. Sharman, D. J. Jones, J. Rozière , J. Power Sources, 2017,363, 20-26. |
[227] | G. Liu, B. Wang, L. Xu, P. Ding, P. Zhang, J. Xia, H. Li, J. Qian , Chin. J. Catal., 2018,39, 790-799. |
[228] | S. Y. Lin, M. H. Chang , Int. J. Hydrogen Energy, 2015,40, 7879-7885. |
[229] | P. Chandran, D. Puthusseri, S. Ramaprabhu , Int. J. Hydrogen Energy, 2019,44, 4951-4961. |
[230] | M. Müllner, M. Riva, F. Kraushofer, M. Schmid, G. S. Parkinson, S. F. L. Mertens, U. Diebold , J. Phys. Chem. C, 2018,123, 8304-8311. |
[231] | K. Huang, S. Guo, R. Wang, S. Lin, N. Hussain, H. Wei, B. Deng, Y. Long, M. Lei, H. Tang, H. Wu , Chin. J. Catal., 2020,41, 1754-1760. |
[232] |
T. M. Huggins, J. J. Pietron, H. Wang, Z. J. Ren, J. C. Biffinger , Bioresour. Technol., 2015,195, 147-153.
DOI URL PMID |
[233] | P. R. Kasturi, A. Arunchander, D. Kalpana, R. K. Selvan , J. Phys. Chem. Solids, 2019,124, 305-311. |
[234] |
H. Lv, S. Mu , Nanoscale, 2014,6, 5063-5074.
DOI URL PMID |
[1] | Li Zhu, Yiyang Lin, Kang Liu, Emiliano Cortés, Hongmei Li, Junhua Hu, Akira Yamaguchi, Xiaoliang Liu, Masahiro Miyauchi, Junwei Fu, Min Liu. Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products [J]. Chinese Journal of Catalysis, 2021, 42(9): 1500-1508. |
[2] | He-lei Wei, Ai-dong Tan, Shu-zhi Hu, Jin-hua Piao, Zhi-yong Fu. Efficient spinel iron-cobalt oxide/nitrogen-doped ordered mesoporous carbon catalyst for rechargeable zinc-air batteries [J]. Chinese Journal of Catalysis, 2021, 42(9): 1451-1458. |
[3] | Xue-Peng Yin, Shu-Wen Luo, Shang-Feng Tang, Xiu-Li Lu, Tong-Bu Lu. In situ synthesis of a nickel boron oxide/graphdiyne hybrid for enhanced photo/electrocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2021, 42(8): 1379-1386. |
[4] | Anuj Kumar, Ying Zhang, Yin Jia, Wen Liu, Xiaoming Sun. Redox chemistry of N4-Fe 2+ in iron phthalocyanines for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2021, 42(8): 1404-1412. |
[5] | Rajender Boddula, Guancai Xie, Beidou Guo, Jian Ru Gong. Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes [J]. Chinese Journal of Catalysis, 2021, 42(8): 1387-1394. |
[6] | Ting Wang, Shaoxiong Li, Bingling He, Xiaojuan Zhu, Yonglan Luo, Qian Liu, Tingshuai Li, Siyu Lu, Chen Ye, Abdullah M. Asiri, Xuping Sun. Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions [J]. Chinese Journal of Catalysis, 2021, 42(6): 1024-1029. |
[7] | Yazhi Cai, Li Tao, Gen Huang, Nana Zhang, Yuqin Zou, Shuangyin Wang. Regulating carbon work function to boost electrocatalytic activity for the oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2021, 42(6): 938-944. |
[8] | Jing Li, Xiang Sun, Yongzheng Duan, Dongmei Jia, Yuejin Li, Jianguo Wang. Enhanced oxygen reduction reaction performance over Pd catalysts by oxygen-surface-modified SiC [J]. Chinese Journal of Catalysis, 2021, 42(6): 963-970. |
[9] | Qiang Hu, Hua Wang, Feifei Xiang, Qiaoji Zheng, Xinguo Ma, Yu Huo, Fengyu Xie, Chenggang Xu, Dunmin Lin, Jisong Hu. Critical roles of molybdate anions in enhancing capacitive and oxygen evolution behaviors of LDH@PANI nanohybrids [J]. Chinese Journal of Catalysis, 2021, 42(6): 980-993. |
[10] | Jun-Sheng Jiang, He-Lei Wei, Ai-Dong Tan, Rui Si, Wei-De Zhang, Yu-Xiang Yu. Fabricating high-loading Fe-N4 single-atom catalysts for oxygen reduction reaction by carbon-assisted pyrolysis of metal complexes [J]. Chinese Journal of Catalysis, 2021, 42(5): 753-761. |
[11] | Yanjie Li, Rifeng Wu, Yang Liu, Ying Wen, Pei Kang Shen. High-quality and deeply excavated PtPdNi nanocubes as efficient catalysts toward oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2021, 42(5): 772-780. |
[12] | Shibo Li, Zhi Qun Tian, Yang Liu, Zheng Jang, Syed Waqar Hasan, Xingfa Chen, Panagiotis Tsiakaras, Pei Kang Shen. Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions [J]. Chinese Journal of Catalysis, 2021, 42(4): 648-657. |
[13] | Ya-Ru Lv, Xue-Jing Zhai, Shan Wang, Hong Xu, Rui Wang, Shuang-Quan Zang. 3D-ordered macroporous N-doped carbon encapsulating Fe-N alloy derived from a single-source metal-organic framework for superior oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2021, 42(3): 490-500. |
[14] | Yang Qiu, Xiaohong Xie, Wenzhen Li, Yuyan Shao. Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design [J]. Chinese Journal of Catalysis, 2021, 42(12): 2094-2104. |
[15] | Steffen Cychy, Sebastian Lechler, Zijian Huang, Michael Braun, Ann Cathrin Brix, Peter Blümler, Corina Andronescu, Friederike Schmid, Wolfgang Schuhmann, Martin Muhler. Optimizing the nickel boride layer thickness in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in glycerol oxidation [J]. Chinese Journal of Catalysis, 2021, 42(12): 2206-2215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||