Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (8): 1298-1310.DOI: 10.1016/S1872-2067(20)63551-3
• Articles • Previous Articles
Panpan Wang, Jiahao Duan, Jie Wang, Fuming Mei, Peng Liu
Received:2019-12-03
Revised:2019-12-25
Online:2020-08-18
Published:2020-08-08
Supported by:Panpan Wang, Jiahao Duan, Jie Wang, Fuming Mei, Peng Liu. Elucidating structure-performance correlations in gas-phase selective ethanol oxidation and CO oxidation over metal-doped γ-MnO2[J]. Chinese Journal of Catalysis, 2020, 41(8): 1298-1310.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63551-3
| [1] S. L. Suib, Acc. Chem. Res., 2008, 41, 479-487. [2] E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba, M. Hara, J. Am. Chem. Soc., 2019, 141, 890-900. [3] L. Pahalagedara, D. A. Kriz, N. Wasalathanthri, C. Weerakkody, Y. Meng, S. Dissanayake, M. Pahalagedara, Z. Luo, S. L. Suib, P. Nandi, R. J. Meyer, Appl. Catal. B, 2017, 204, 411-420. [4] S. Liang, F. Teng, G. Bulgan, R. Zong, Y. Zhu, J. Phys. Chem. C, 2008, 112, 5307-5315. [5] J. Zhang, Y. Li, L. Wang, C, Zhang, H. He, Catal. Sci. Technol., 2015, 5, 2305-2313. [6] B. Zhao, R. Ran, X. Wu, D. Weng, Appl. Catal. A, 2016, 514, 24-34. [7] X. Weng, Y. Long, W. Wang, M. Shao, Z. Wu, Chin. J. Catal., 2019, 40, 638-646. [8] S. Guan, W. Li, J. Ma, Y. Lei, Y. Zhu, Q. Huang, X. Dou, J. Ind. Eng. Chem., 2018, 66, 126-140. [9] C. Angelici, B. M. Weckhuysen, P. C. A. Bruijnincx, ChemSusChem, 2013, 6, 1595-1614. [10] N. Zheng, G. D. Stucky, J. Am. Chem. Soc., 2006, 128, 14278-14280. [11] O. A. Simakova, V. I. Sobolev, K. Y. Koltunov, B. Campo, A.-R. Leino, K. Kordás, D. Y. Murzin, ChemCatChem, 2010, 2, 1535-1538. [12] P. Liu, E. J. M. Hensen, J. Am. Chem. Soc., 2013, 135, 14032-14035. [13] J. Mielby, J. O. Abildstrøm, F. Wang, T. Kasama, C. Weidenthaler, S. Kegn?s, Angew. Chem. Int. Ed., 2014, 53, 12513-12516. [14] T. Takei, N. Iguchi, M. Haruta, Catal. Surv. Asia, 2011, 15, 80-88. [15] H. Zhou, J. Y. Wang, X. Chen, C.-L. O'Young, S. L. Suib, Microporous Mesoporous Mater., 1998, 21, 315-324. [16] J. Chen, X. Tang, J. Liu, E. Zhan, J. Li, X. Huang, W. Shen, Chem. Mater., 2007, 19, 4292-4299. [17] L. Lamaita, M. A. Peluso, J. E. Sambeth, H. J. Thomas, Appl. Catal. B, 2005, 61, 114-119. [18] V. P. Santos, M. F. R. Pereira, J. J. M. Órfão, J. L. Figueiredo, Appl. Catal. B, 2010, 99, 353-363. [19] J. Li, R. Wang, J. Hao, J. Phys. Chem. C, 2010, 114, 10544-10550. [20] H. Li, G. Qi, Tana, X. Zhang, X. Huang, W. Li, W. Shen, Appl. Catal. B, 2011, 103, 54-61. [21] B. Bai, J. Li, J. Hao, Appl. Catal. B, 2015, 164, 241-250. [22] B. Bai, Q. Qiao, Y. Li, Y. Peng, J. Li, Chin. J. Catal., 2018, 39, 630-638. [23] V. V. Dutov, G. V. Mamontov, V. I. Sobolev, O. V. Vodyankina, Catal. Today, 2016, 278, 164-173. [24] P. Liu, J. Duan, Q. Ye, F. Mei, Z. Shu, H. Chen, J. Catal., 2018, 367, 115-125. [25] W. Y. Hernández, M. A. Centeno, S. Ivanova, P. Eloy, E. M. Gaigneaux, J. A. Odriozola, Appl. Catal. B, 2012, 123-124, 27-35. [26] J. Yang, H. Zhou, L. Wang, Y. Zhang, C. Chen, H. Hu, G. Li, Y. Zhang, Y. Ma, J. Zhang, ChemCatChem, 2017, 9, 1163-1167. [27] T. Uematsu, Y. Miyamoto, Y. Ogasawara, K. Suzuki, K. Yamaguchi, N. Mizuno, Catal. Sci. Technol., 2016, 6, 222-233. [28] X. Li, J. Ma, L. Yang, G. He, C. Zhang, R. Zhang, H. He, Environ. Sci. Technol., 2018, 52, 12685-12696. [29] R. D. Shannon, Acta Crystallogr. A, 1976, 32, 751-767. [30] C. K. King'ondu, N. Opembe, C. Chen, K. Ngala, H. Huang, A. Iyer, H. F. Garcés, S. L. Suib, Adv. Funct. Mater., 2011, 21, 312-323. [31] V. P. Santos, O. S. G. P. Soares, J. J. W. Bakker, M. F. R. Pereira, J. J. M. Órfão, J. Gascon, F. Kapteijn, J. L. Figueiredo, J. Catal., 2012, 293, 165-174. [32] S. Ming, P. Wang, P. Liu, J. Duan, F. Mei, L. Pang, Z. Chen, T. Li, Chem. Eng. J., 2020, 379, 122287. [33] J. Nie, H. Liu, J. Catal., 2014, 316, 57-66. [34] R. Kumar, S. Sithambaram, S. L. Suib, J. Catal., 2009, 262, 304-313. [35] P. Liu, M. Derchi, E. J. M. Hensen, Appl. Catal. B, 2014, 144, 135-143. [36] J. Zhang, J.-H. Zhang, C.-B. Zhang, H. He, Acta Phys.-Chim. Sin., 2015, 31, 353-359. [37] J. Hou, Y. Li, L. Liu, L. Ren, X. Zhao, J. Mater. Chem. A, 2013, 1, 6736-6741. [38] L. Wang, J. Zhang, Y. Zhu, S. Xu, C. Wang, C. Bian, X. Meng, F.-S. Xiao, ACS Catal., 2017, 7, 7461-7465. [39] D. Gu, J.-C. Tseng, C. Weidenthaler, H.-J. Bongard, B. Spliethoff, W. Schmidt, F. Soulimani, B. M. Weckhuysen, F. Schüth, J. Am. Chem. Soc., 2016, 138, 9572-9580. [40] M. Sun, W. Li, B. Zhang, G. Cheng, B. Lan, F. Ye, Y. Zheng, X. Cheng, L. Yu, Chem. Eng. J., 2018, 331, 626-635. [41] M. Luo, Y. Cheng, X. Peng, W. Pan, Chem. Eng. J., 2019, 369, 758-765. [42] W. Gac, Appl. Catal. B, 2007, 75, 107-117. [43] B. Kilos, A. T. Bell, E. Iglesia, J. Phys. Chem. C, 2009, 113, 2830-2836. [44] G. Zhao, S. Fan, X. Pan, P. Chen, Y. Liu, Y. Lu, ChemSusChem, 2017, 10, 1380-1384. [45] P. Liu, T. Li, H. Chen, E. J. M. Hensen, J. Catal., 2017, 347, 45-56. [46] Y.-C. Son, V. D. Makwana, A. R. Howell, S. L. Suib, Angew. Chem. Int. Ed., 2001, 40, 4280-4283. [47] W. Song, P. Liu, E. J. M. Hensen, Catal. Sci. Technol., 2014, 4, 2997-3003. [48] W. Zhang, S. T. Oyama, J. Phys. Chem., 1996, 100, 10759-10767. |
| [1] | Xianquan Li, Jifeng Pang, Yujia Zhao, Pengfei Wu, Wenguang Yu, Peifang Yan, Yang Su, Mingyuan Zheng. Ethanol dehydrogenation to acetaldehyde over a Cuδ+-based Cu-MFI catalyst [J]. Chinese Journal of Catalysis, 2023, 49(6): 91-101. |
| [2] | Cheng Liu, Hurunqing Liu, Jimmy C. Yu, Ling Wu, Zhaohui Li. Strategies to engineer metal-organic frameworks for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 55(12): 1-19. |
| [3] | Ning Zhang, Jiayi Du, Na Zhou, Depeng Wang, Di Bao, Haixia Zhong, Xinbo Zhang. High-valence metal-doped amorphous IrOx as active and stable electrocatalyst for acidic oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 53(10): 134-142. |
| [4] | Huining Wang, Anxiang Guan, Junbo Zhang, Yuying Mi, Si Li, Taotao Yuan, Chao Jing, Lijuan Zhang, Linjuan Zhang, Gengfeng Zheng. Copper-doped nickel oxyhydroxide for efficient electrocatalytic ethanol oxidation [J]. Chinese Journal of Catalysis, 2022, 43(6): 1478-1484. |
| [5] | Xiaohui Yu, Haiwei Su, Jianping Zou, Qinqin Liu, Lele Wang, Hua Tang. Doping-induced metal-N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance [J]. Chinese Journal of Catalysis, 2022, 43(2): 421-432. |
| [6] | Junwei Chen, Zuqiao Ou, Haixin Chen, Shuqin Song, Kun Wang, Yi Wang. Recent developments of nanocarbon based supports for PEMFCs electrocatalysts [J]. Chinese Journal of Catalysis, 2021, 42(8): 1297-1326. |
| [7] | Jingping Zhong, Kexin Huang, Wentao Xu, Huaguo Tang, Muhammad Waqas, Youjun Fan, Ruixiang Wang, Wei Chen, Yixuan Wang. New strategy of S,N co-doping of conductive-copolymer-derived carbon nanotubes to effectively improve the dispersion of PtCu nanocrystals for boosting the electrocatalytic oxidation of methanol [J]. Chinese Journal of Catalysis, 2021, 42(7): 1205-1215. |
| [8] | Shibo Li, Zhi Qun Tian, Yang Liu, Zheng Jang, Syed Waqar Hasan, Xingfa Chen, Panagiotis Tsiakaras, Pei Kang Shen. Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions [J]. Chinese Journal of Catalysis, 2021, 42(4): 648-657. |
| [9] | Jianfang Liu, Zhenzhen Ran, Qiyan Cao, Shengfu Ji. Preparation of MIL-88B(Fex,Co1‒x) catalysts and their application in one-step liquid-phase methanol oxidation to methyl formate using H2O2 [J]. Chinese Journal of Catalysis, 2021, 42(12): 2254-2264. |
| [10] | Yingdong Chen, Shujiao Yang, Hongfei Liu, Wei Zhang, Rui Cao. An unusual network of α-MnO2 nanowires with structure-induced hydrophilicity and conductivity for improved electrocatalysis [J]. Chinese Journal of Catalysis, 2021, 42(10): 1724-1731. |
| [11] | Hee Jin Kim, Yong-Deok Ahn, Jeonghyeon Kim, Kyoung-Su Kim, Yeon Uk Jeong, Jong Wook Hong, Sang-Il Choi. Surface elemental distribution effect of Pt-Pb hexagonal nanoplates for electrocatalytic methanol oxidation reaction [J]. Chinese Journal of Catalysis, 2020, 41(5): 813-819. |
| [12] | Quanming Ren, Shengpeng Mo, Jie Fan, Zhentao Feng, Mingyuan Zhang, Peirong Chen, Jiajian Gao, Mingli Fu, Limin Chen, Junliang Wu, Daiqi Ye. Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface [J]. Chinese Journal of Catalysis, 2020, 41(12): 1873-1883. |
| [13] | Dongni Yu, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Stabilizing copper species using zeolite for ethanol catalytic dehydrogenation to acetaldehyde [J]. Chinese Journal of Catalysis, 2019, 40(9): 1375-1384. |
| [14] | Jun Yang, Yuxi Liu, Jiguang Deng, Xingtian Zhao, Kunfeng Zhang, Zhuo Han, Hongxing Dai. AgAuPd/meso-Co3O4:High-performance catalysts for methanol oxidation [J]. Chinese Journal of Catalysis, 2019, 40(6): 837-848. |
| [15] | Huiyan Pan, Xiaowei Chen, Oihane Sanz, Miguel A. Cauqui, Jose M. Rodríguez-Izquierdo, Juan J. Delgado. A facile one-pot hydrothermal synthesis as an efficient method to modulate the potassium content of cryptomelane and its effects on the redox and catalytic properties [J]. Chinese Journal of Catalysis, 2019, 40(6): 940-952. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||