Chinese Journal of Catalysis ›› 2025, Vol. 76: 173-184.DOI: 10.1016/S1872-2067(25)64770-X
• Articles • Previous Articles Next Articles
Yongqi Zhaoa, Junjie Jianga, Yang Zoua, Pu Wanga, Xue Lia, Xiaolong Liua,b,*(), Tingyu Zhua
Received:
2025-04-03
Accepted:
2025-06-19
Online:
2025-09-18
Published:
2025-09-10
Contact:
Xiaolong Liu
Supported by:
Yongqi Zhao, Junjie Jiang, Yang Zou, Pu Wang, Xue Li, Xiaolong Liu, Tingyu Zhu. Ultra-low doping 0.1(PtMnFeCoNi)/TiO2 catalysts: Modulating the electronic states of active metal sites to enhance CO oxidation through high entropy strategy[J]. Chinese Journal of Catalysis, 2025, 76: 173-184.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64770-X
Fig. 1. (a) Synthesis process of high-entropy 0.1(PtMnFeCoNi)/TiO2 catalyst. TEM (b) and HRTEM (c) images, SEAD (d) and elemental mapping (e-k) of 0.1(PtMnFeCoNi)/TiO2 catalyst.
Fig. 6. CO oxidation performance and stability of the catalysts, 0.1Pt/TiO2, 0.1(PtM)/TiO2 and 0.1(PtMnFeCoNi)/TiO2 (a), 0.1(Pt1M4)/TiO2 (b), the stability evaluation (c) at 60000 h-1 and 230 °C.
Fig. 7. In-situ DRIFTs spectra of 0.1Pt/TiO2 and 0.1(PtMnFeCoNi)/TiO2 catalysts. (a,d) Instantaneous changes of 1% CO adsorption for 30 min at 250 °C. (b,e) Instantaneous changes of 1% CO + 16% O2 adsorption for 30 min at 250 °C. (c,f) Changes of CO + O2 surface reaction with temperature.
Fig. 8. Optimized structure and corresponding charge density differences of CO and O2 adsorbed on 0.1Pt/TiO2 (a-d) and 0.1(PtMnFeCoNi)/TiO2 (e-h). (i,j) PDOS profiles of 0.1Pt/TiO2 and 0.1(PtMnFeCoNi)/TiO2.
|
[1] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: Redispersion process and mechanism [J]. Chinese Journal of Catalysis, 2024, 58(3): 237-246. |
[2] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 2: Catalytic performance and reaction mechanism in CO oxidation [J]. Chinese Journal of Catalysis, 2024, 58(3): 247-254. |
[3] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[4] | Yang Ou, Songda Li, Fei Wang, Xinyi Duan, Wentao Yuan, Hangsheng Yang, Ze Zhang, Yong Wang. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments [J]. Chinese Journal of Catalysis, 2022, 43(8): 2026-2033. |
[5] | Chun Zhu, Jin-Xia Liang, Yang-Gang Wang, Jun Li. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1830-1841. |
[6] | Yanan Gao, Fu-Kuo Chiang, Shaojie Li, Long Zhang, Peng Wang, Emiel J. M. Hensen. Influence of hematite morphology on the CO oxidation performance of Au/α-Fe2O3 [J]. Chinese Journal of Catalysis, 2021, 42(4): 658-665. |
[7] | Fan Wu, Lei He, Wen-Cui Li, Rao Lu, Yang Wang, An-Hui Lu. Highly dispersed boron-nitride/CuOx-supported Au nanoparticles for catalytic CO oxidation at low temperatures [J]. Chinese Journal of Catalysis, 2021, 42(3): 388-395. |
[8] | Chunyan Dong, Yan Zhou, Na Ta, Wenlu Liu, Mingrun Li, Wenjie Shen. Shape impact of nanostructured ceria on the dispersion of Pd species [J]. Chinese Journal of Catalysis, 2021, 42(12): 2234-2241. |
[9] | Zhu-Yuan Zheng, Dong Wang, Yi Zhang, Fan Yang, Xue-Qing Gong. Structures and reactivities of the CeO2/Pt(111) reverse catalyst: A DFT+U study [J]. Chinese Journal of Catalysis, 2020, 41(9): 1360-1368. |
[10] | Panpan Wang, Jiahao Duan, Jie Wang, Fuming Mei, Peng Liu. Elucidating structure-performance correlations in gas-phase selective ethanol oxidation and CO oxidation over metal-doped γ-MnO2 [J]. Chinese Journal of Catalysis, 2020, 41(8): 1298-1310. |
[11] | Linxi Wang, Shyam Deo, Kerry Dooley, Michael J. Janik, Robert M. Rioux. Influence of metal nuclearity and physicochemical properties of ceria on the oxidation of carbon monoxide [J]. Chinese Journal of Catalysis, 2020, 41(6): 951-962. |
[12] | Ya-Qiong Su, Long Zhang, Valery Muravev, Emiel J. M. Hensen. Lattice oxygen activation in transition metal doped ceria [J]. Chinese Journal of Catalysis, 2020, 41(6): 977-984. |
[13] | Yuxian Gao, Zhenhua Zhang, Zhaorui Li, Weixin Huang. Understanding morphology-dependent CuOx-CeO2 interactions from the very beginning [J]. Chinese Journal of Catalysis, 2020, 41(6): 1006-1016. |
[14] | Yu Aung May, Wei-Wei Wang, Han Yan, Shuai Wei, Chun-Jiang Jia. Insights into facet-dependent reactivity of CuO-CeO2 nanocubes and nanorods as catalysts for CO oxidation reaction [J]. Chinese Journal of Catalysis, 2020, 41(6): 1017-1027. |
[15] | Rao Lu, Lei He, Yang Wang, Xin-Qian Gao, Wen-Cui Li. Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation [J]. Chinese Journal of Catalysis, 2020, 41(2): 350-356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||