Chinese Journal of Catalysis ›› 2026, Vol. 80: 59-91.DOI: 10.1016/S1872-2067(25)64859-5
• Reviews • Previous Articles Next Articles
Liyuan Xiao, Zhenlu Wang, Jingqi Guan(
)
Received:2025-05-12
Accepted:2025-07-11
Online:2026-01-05
Published:2026-01-05
Contact:
Jingqi Guan
About author:Jingqi Guan (Jilin University) was invited as a young member of the 6th Editorial Board of Chin. J. Catal. and the 5th Editorial Board of Acta Phys.-chim. Sin. Prof. Jingqi Guan received his B.A. degree in 2002 and Ph.D. degree in 2007 from Jilin University. He carried out postdoctoral research in the University of California at Berkeley from 2012 to 2013 and in the Dalian Institute of Chemical Physics from 2014 to 2018. His research interests are in engineering single-atom catalysts and 2D materials for electrocatalysis, energy, and the environment. He has published more than 250 peer-reviewed papers.
Supported by:Liyuan Xiao, Zhenlu Wang, Jingqi Guan. Advances in multinuclear metal-organic frameworks for electrocatalysis[J]. Chinese Journal of Catalysis, 2026, 80: 59-91.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64859-5
Fig. 1. (a) The development of MOFs. Reproduced with permission: Copyright 1997, Wiley‐VCH [24]; Copyright 2002, American Chemical Society [25]; Copyright 2004, Wiley‐VCH [26]; Copyright 2005, Elsevier Ltd. [27]; Copyright 2006, American Chemical Society[28]; Copyright 2008, American Chemical Society [29]; Copyright 2013, American Chemical Society [30]; Copyright 2014, American Chemical Society [31]; Copyright 2015, Wiley‐VCH [32]; Copyright 2017, Royal Society of Chemistry [33]; Copyright 2019, Royal Society of Chemistry [34]; Copyright 2022, Royal Society of Chemistry [35]. (b) The formation mechanism of MOFs. (c) Binuclear Ce-based MOF. Reproduced with permission [12]. Copyright 2022, American Chemical Society. (d) A trinuclear MOF. Reproduced with permission [36]. Copyright 2024, Wiley‐VCH. (e) Hexanuclear Zr-based MOF. Reproduced with permission [37]. Copyright 2022, Elsevier Ltd. (f) A dodecanuclear MOF. Reproduced with permission [38]. Copyright 2020, Wiley‐VCH.
Fig. 2. (a?f) Summary of synthesis methodologies of MOFs. Reproduced with permission [87]. Copyright 2024, Elsevier Ltd. Reproduced with permission [91]. Copyright 2022, Royal Society of Chemistry. Reproduced with permission [94]. Copyright 2022, Elsevier Ltd. Reproduced with permission [96]. Copyright 2024, Elsevier Ltd. Reproduced with permission [97]. Copyright 2023, Royal Society of Chemistry. Reproduced with permission [100]. Copyright 2022, Elsevier Ltd.
| SBU type | Nuclearity | Configuration | Representative MOFs | Ref. |
|---|---|---|---|---|
| Paddlewheel dinuclear cluster | 2 | quasi-square planar or distorted tetrahedral | HKUST-1 MOF-505 | [ |
| Trinuclear cluster | 3 | planar triangular | MIL-100(Fe) PCN-333 | [ |
| Tetranuclear cluster | 4 | tetrahedral | UiO-66 MIL-125(Ti) | [ |
| Hexanuclear cluster | 6 | octahedral | UiO-67/68 MOF-808 | [ |
| High-nuclearity cluster | ≥6 | cube-like | ZJU-28 NU-1000 | [ |
| Dodecanuclear cluster | 12 | cage-like or wheel-like | Ln12 | [ |
| Helical trinuclear chain | 3 | 1D infinite chain | MIL-118 | [ |
| Wheel-shaped Mo cluster | 6 | cyclic wheel-shaped configuration | POMOFs Ni8Mo8 | [ |
| Defective Zr cluster | 6-8 | open octahedral configuration | DUT-67 MOF-545 | [ |
Table 1 Classification of multinuclear MOFs by SBU types.
| SBU type | Nuclearity | Configuration | Representative MOFs | Ref. |
|---|---|---|---|---|
| Paddlewheel dinuclear cluster | 2 | quasi-square planar or distorted tetrahedral | HKUST-1 MOF-505 | [ |
| Trinuclear cluster | 3 | planar triangular | MIL-100(Fe) PCN-333 | [ |
| Tetranuclear cluster | 4 | tetrahedral | UiO-66 MIL-125(Ti) | [ |
| Hexanuclear cluster | 6 | octahedral | UiO-67/68 MOF-808 | [ |
| High-nuclearity cluster | ≥6 | cube-like | ZJU-28 NU-1000 | [ |
| Dodecanuclear cluster | 12 | cage-like or wheel-like | Ln12 | [ |
| Helical trinuclear chain | 3 | 1D infinite chain | MIL-118 | [ |
| Wheel-shaped Mo cluster | 6 | cyclic wheel-shaped configuration | POMOFs Ni8Mo8 | [ |
| Defective Zr cluster | 6-8 | open octahedral configuration | DUT-67 MOF-545 | [ |
| Linker | Ligand | Structural characteristics | Coordination characteristics | Examples |
|---|---|---|---|---|
| Rigid dicarboxylic acid | terephthalic acid(H2BDC), naphthalic acid (H2NDC), anthraquinone diformic acid (H2AQDC) | rigid main chain structure, π conjugation | multidentate, bridging ability | BIPT-3 [ MCF-37 [ |
| Flexible dicarboxylic acid | 1,4-cyclohexanedicarboxylic acid (H2CHDC), glutaric acid, Adipic acid | conformational flexibility, rotatable | high coordinative freedom, asymmetric topology | Cu2(CHDC)2 [ [Zn(BTA)(chdc)0.5]n [ |
| Tricarboxylic acid | trimesic acid (H3BTC), trimellitic acid | multi-dimensional porous structure | multisite bridging, complex topological structures | HKUST-1 [ TCNQ@Cu3(BTC)2 [ HKUST-1 [ |
| Tetracarboxylic acid | pyromellitic acid (H4BTEC) | high connectivity, high adaptability | polynuclear polymeric metal clusters, highly cross-linked 3D network structure | CTH-14 [ Mg5(OH)2(BTEC)2(H2O)4·11H2O [ |
| Pyrazolate | 3,5-dimethylpyrazole (DMPZ), 1H-pyrazole-3,5-dicarboxylic acid (H3PDC) | bearing a five-membered nitrogen heterocycle | π conjugatio, chelating or bridging | FDM-91 [ |
| Imidazole | 2-methylimidazole (2-MeIM), imidazole-4,5-dicarboxylic acid (H3IDC) | high thermal and chemical stability | N-donor ligand, extended π-conjugation | ZIF-8 [ ZIF-67 [ |
| Phosphate | phenylphosphonic acid (PPA), aminomethylphosphonic acid (AMPA) | contains P=O and P-OH bonds, highly acidic multidentate oxygen donor | multidentate and multibridging, high coordination strength | Zr-MOFs/F-ssDNA [ |
| N-heterocyclic carboxylic acids | pyridine-2,6-dicarboxylic acid (H2PDC), imidazolecarboxylic acid | bearing N-heterocycles and carboxyl groups | N,O-multidentate coordination, assembly of multinuclear metal clusters | IHEP-11 [ |
Table 2 Classification of multinuclear MOFs by linkers.
| Linker | Ligand | Structural characteristics | Coordination characteristics | Examples |
|---|---|---|---|---|
| Rigid dicarboxylic acid | terephthalic acid(H2BDC), naphthalic acid (H2NDC), anthraquinone diformic acid (H2AQDC) | rigid main chain structure, π conjugation | multidentate, bridging ability | BIPT-3 [ MCF-37 [ |
| Flexible dicarboxylic acid | 1,4-cyclohexanedicarboxylic acid (H2CHDC), glutaric acid, Adipic acid | conformational flexibility, rotatable | high coordinative freedom, asymmetric topology | Cu2(CHDC)2 [ [Zn(BTA)(chdc)0.5]n [ |
| Tricarboxylic acid | trimesic acid (H3BTC), trimellitic acid | multi-dimensional porous structure | multisite bridging, complex topological structures | HKUST-1 [ TCNQ@Cu3(BTC)2 [ HKUST-1 [ |
| Tetracarboxylic acid | pyromellitic acid (H4BTEC) | high connectivity, high adaptability | polynuclear polymeric metal clusters, highly cross-linked 3D network structure | CTH-14 [ Mg5(OH)2(BTEC)2(H2O)4·11H2O [ |
| Pyrazolate | 3,5-dimethylpyrazole (DMPZ), 1H-pyrazole-3,5-dicarboxylic acid (H3PDC) | bearing a five-membered nitrogen heterocycle | π conjugatio, chelating or bridging | FDM-91 [ |
| Imidazole | 2-methylimidazole (2-MeIM), imidazole-4,5-dicarboxylic acid (H3IDC) | high thermal and chemical stability | N-donor ligand, extended π-conjugation | ZIF-8 [ ZIF-67 [ |
| Phosphate | phenylphosphonic acid (PPA), aminomethylphosphonic acid (AMPA) | contains P=O and P-OH bonds, highly acidic multidentate oxygen donor | multidentate and multibridging, high coordination strength | Zr-MOFs/F-ssDNA [ |
| N-heterocyclic carboxylic acids | pyridine-2,6-dicarboxylic acid (H2PDC), imidazolecarboxylic acid | bearing N-heterocycles and carboxyl groups | N,O-multidentate coordination, assembly of multinuclear metal clusters | IHEP-11 [ |
Fig. 3. (a) The structure of MIL-100(Fe). Reproduced with permission [104]. Copyright 2017, American Chemical Society. (b) The coordination model of Ce-AQ. (c) Oxygen bridge groups of Ce-O-Ce in Ce-AQ. Reproduced with permission [12]. Copyright 2022, American Chemical Society. Structures of [RE3(μ3-OH)(COO)6] SBUs (d), RE-BDC (e) and RE-NDC (f). Reproduced with permission [105]. Copyright 2017, Royal Society of Chemistry.
| Characteristic | In-situ by self-assembly | Pre-synthesize metal clusters |
|---|---|---|
| Representative example | MIL-100 (Fe) [103] Ce-AQ [12] UiO-66(Zr) [106] ZIF-8@XLPEO [107] | RE-BDC [105] PCN-242(Fe2Co) [108] UiO-66-NH2 [109] |
| Synthesis yield | relatively low yield, condition-dependent | relatively high yield; well-controlled assembly process |
| Crystallinity | relatively low crystallinity, unstable crystal quality | highly crystalline with uniform crystal quality |
| Controllability | poor control over nuclearity and morphology | precise control; uniform structure |
| Functional tunability | dynamic structure, uneven active site distribution | stable structure, well-defined active sites |
| Advantages | simple synthesis, diverse cluster structures | high controllability, facilitates functional design |
| Challenges | low reproducibility, low yield | complex synthesis, stringent conditions |
Table 3 Comparison of in-situ vs. pre-assembled cluster approaches in constructing multinuclear MOFs.
| Characteristic | In-situ by self-assembly | Pre-synthesize metal clusters |
|---|---|---|
| Representative example | MIL-100 (Fe) [103] Ce-AQ [12] UiO-66(Zr) [106] ZIF-8@XLPEO [107] | RE-BDC [105] PCN-242(Fe2Co) [108] UiO-66-NH2 [109] |
| Synthesis yield | relatively low yield, condition-dependent | relatively high yield; well-controlled assembly process |
| Crystallinity | relatively low crystallinity, unstable crystal quality | highly crystalline with uniform crystal quality |
| Controllability | poor control over nuclearity and morphology | precise control; uniform structure |
| Functional tunability | dynamic structure, uneven active site distribution | stable structure, well-defined active sites |
| Advantages | simple synthesis, diverse cluster structures | high controllability, facilitates functional design |
| Challenges | low reproducibility, low yield | complex synthesis, stringent conditions |
Fig. 5. (a) In-situ IR cell. (b) In-situ Raman cell. (c) In-situ XRD cell. (d) In-situ XPS cell. (e) In-situ XAS cell. (f) In-situ cell for M?ssbauer measurements. Reproduced with permission [110]. Copyright 2024, American Chemical Society. (g) In-situ IR insight into the CO2 transfer process on CuSiF6-TPPY surface. Reproduced with permission [116]. Copyright 2024, Elsevier Ltd. (h) In-situ Raman exploration of CO2 adsorption and activation. Reproduced with permission [121]. Copyright 2022, American Chemical Society. In-situ XANES (i) and FE-EXAFS (j) at the Cu K-edge. Reproduced with permission [134]. Copyright 2022, American Chemical Society.
Fig. 6. (a) The mechanism for the HER in acid and alkaline electrolytes. Reproduced with permission [156]. Copyright 2021, Royal Society of Chemistry. (b) The Volcano plot of exchange current density as a function of ?GH*. Reproduced with permission[157]. Copyright 2019, Elsevier Ltd. Al 2p (c) and Ru 2p (d) spectra of Al0.35/Ru0.15-TCPP-CNTs, Al0.35/Ru0.15-TCPP and Al-TCPP. The charge density redistributions of the Al-TCPP (e), Al0.35/Ru0.15-TCPP (f) and Al0.35/Ru0.15-TCPP-CNTs (g) systems. (g) The feasible HER mechanism for the Al0.35/Ru0.15-TCPP-CNTs. (h) The feasible HER mechanism for the Al0.35/Ru0.15-TCPP-CNTs. Reproduced with permission [160]. Copyright 2024, Royal Society of Chemistry.
| Catalyst | η10 (mV) | Tafel slope (mV dec‒1) | Electrolyte | Ref. |
|---|---|---|---|---|
| MOF-3 | 196 | 112.1 | 1.0 mol L‒1 KOH | [ |
| MOF-4 | 238 | 137.8 | 1.0 mol L‒1 KOH | [ |
| Co/Cu-MOF(3) | 391 | 94 | 1.0 mol L‒1 KOH | [ |
| Al0.35/Ru0.15-TCPP | 55 | 76.0 | 1.0 mol L‒1 KOH | [ |
| Mg2V-MOF | 195 | 174 | 1.0 mol L‒1 KOH | [ |
| Ni1Fe2-MOF@GC | 373 | 107 | 0.1 mol L‒1 KOH | [ |
| Fe2Zn-MOF | 221 | 174 | 0.1 mol L‒1 KOH | [ |
| [Co0.5(DIB)(HSA)](C10H8)0.5 | 135 | 84 | 1.0 mol L‒1 KOH | [ |
| [Co(DIB)0.5(SA)] | 294 | 96 | 1.0 mol L‒1 KOH | [ |
| [Co(DIB)0.5(SA)]·(DIB)0.5 | 349 | 121 | 1.0 mol L‒1 KOH | [ |
| Co2Ni1N | 102.6 | 60.17 | 1.0 mol L‒1 KOH | [ |
| Co3N | 246.0 | 108.6 | 1.0 mol L‒1 KOH | [ |
| Ni3N | 296.1 | 133.2 | 1.0 mol L‒1 KOH | [ |
| [(Ce(HTCPP))·H2O]n | 244 | 265 | 1.0 mol L‒1 KOH | [ |
Table 4 Performance comparison of multinuclear MOFs for the HER.
| Catalyst | η10 (mV) | Tafel slope (mV dec‒1) | Electrolyte | Ref. |
|---|---|---|---|---|
| MOF-3 | 196 | 112.1 | 1.0 mol L‒1 KOH | [ |
| MOF-4 | 238 | 137.8 | 1.0 mol L‒1 KOH | [ |
| Co/Cu-MOF(3) | 391 | 94 | 1.0 mol L‒1 KOH | [ |
| Al0.35/Ru0.15-TCPP | 55 | 76.0 | 1.0 mol L‒1 KOH | [ |
| Mg2V-MOF | 195 | 174 | 1.0 mol L‒1 KOH | [ |
| Ni1Fe2-MOF@GC | 373 | 107 | 0.1 mol L‒1 KOH | [ |
| Fe2Zn-MOF | 221 | 174 | 0.1 mol L‒1 KOH | [ |
| [Co0.5(DIB)(HSA)](C10H8)0.5 | 135 | 84 | 1.0 mol L‒1 KOH | [ |
| [Co(DIB)0.5(SA)] | 294 | 96 | 1.0 mol L‒1 KOH | [ |
| [Co(DIB)0.5(SA)]·(DIB)0.5 | 349 | 121 | 1.0 mol L‒1 KOH | [ |
| Co2Ni1N | 102.6 | 60.17 | 1.0 mol L‒1 KOH | [ |
| Co3N | 246.0 | 108.6 | 1.0 mol L‒1 KOH | [ |
| Ni3N | 296.1 | 133.2 | 1.0 mol L‒1 KOH | [ |
| [(Ce(HTCPP))·H2O]n | 244 | 265 | 1.0 mol L‒1 KOH | [ |
Fig. 7. (a) The proposed OER mechanismin in acid and alkaline electrolytes. Reproduced with permission [156]. Copyright 2021, Royal Society of Chemistry. Electron-transfer (b) process and (c) pathways in traditional AEM route. Electron-transfer pathways (d) and process in traditional LOM route (e). Reproduced with permission [176]. Copyright 2022, Wiley‐VCH. (f) Schematic illustration of OPM. Reproduced with permission [180]. Copyright 2024, American Chemical Society. (g) High-solution XPS spectra of Fe 2p in Fe2V-MOF and Fe3-MOF. (h) Schematic representation of the electronic coupling between V and Fe in Fe2V-MOF and Fe3-MOF. Reproduced with permission [166]. Copyright 2022, American Chemical Society. (i) EPR spectra. (j) DOS of Co 3d orbital. Reproduced with permission [182]. Copyright 2019, American Chemical Society.
| Catalyst | η10 (mV) | Tafel slope (mV·dec-1) | Electrolyte | Ref. |
|---|---|---|---|---|
| MOF-3 | 180 | 189.7 | 1.0 mol L‒1 KOH | [ |
| MOF-4 | 228 | 290.6 | 1.0 mol L‒1 KOH | [ |
| Co4-Co-MOF | 357 | — | 1.0 mol L‒1 KOH | [ |
| Co/Cu-MOF(1) | 320 | 49 | 1.0 mol L‒1 KOH | [ |
| CUMSs-ZIF-67 | 320 | 53.7 | 1.0 mol L‒1 KOH | [ |
| BUT-124(Co)-S80 | 393 | — | 1.0 mol L‒1 KOH | [ |
| Fe2V-MOF | 314 | 58 | 1.0 mol L‒1 KOH | [ |
| Ni1Fe2-MOF@GC | 283 | 41 | 0.1 mol L‒1 KOH | [ |
| Fe2Co-MOF | 339 | 36.2 | 1 mol L‒1 KOH | [ |
| Ni-MOF-Fe-Se-400 | 242 | 51.2 | 1 mol L‒1 KOH | [ |
| PCN-Fe2Co-Fe2Ni | 271 | 67.7 | 1 mol L‒1 KOH | [ |
| [Co(dpda)(4,4′-bpy)]n | 448 | 93.3 | 1 mol L‒1 KOH | [ |
| AB&Ni-MOF(1:1)/GC | 379 | 77 | 1 mol L‒1 KOH | [ |
| NNU-22 | 376 | 77.2 | 0.1 mol L‒1 KOH | [ |
| NNU-23 | 365 | 81.8 | 0.1 mol L‒1 KOH | [ |
| NiFe-NFF | 227 | 38.9 | 1 mol L‒1 KOH | [ |
| Fe2Ni MOF/NF | 222 | 42.4 | 1.0 mol L‒1 KOH | [ |
| hov-IrOx/CeO2 | 251 | 55 | 0.1 mol L‒1 HClO4 | [ |
| FeNiBTC/SSM5 | 223.7 | 74.5 | 1 mol L‒1 KOH | [ |
| NiCoFeOx@C-400 | 253 | 83.3 | 1 mol L‒1 KOH | [ |
Table 5 Performance comparison of multinuclear MOFs for the OER.
| Catalyst | η10 (mV) | Tafel slope (mV·dec-1) | Electrolyte | Ref. |
|---|---|---|---|---|
| MOF-3 | 180 | 189.7 | 1.0 mol L‒1 KOH | [ |
| MOF-4 | 228 | 290.6 | 1.0 mol L‒1 KOH | [ |
| Co4-Co-MOF | 357 | — | 1.0 mol L‒1 KOH | [ |
| Co/Cu-MOF(1) | 320 | 49 | 1.0 mol L‒1 KOH | [ |
| CUMSs-ZIF-67 | 320 | 53.7 | 1.0 mol L‒1 KOH | [ |
| BUT-124(Co)-S80 | 393 | — | 1.0 mol L‒1 KOH | [ |
| Fe2V-MOF | 314 | 58 | 1.0 mol L‒1 KOH | [ |
| Ni1Fe2-MOF@GC | 283 | 41 | 0.1 mol L‒1 KOH | [ |
| Fe2Co-MOF | 339 | 36.2 | 1 mol L‒1 KOH | [ |
| Ni-MOF-Fe-Se-400 | 242 | 51.2 | 1 mol L‒1 KOH | [ |
| PCN-Fe2Co-Fe2Ni | 271 | 67.7 | 1 mol L‒1 KOH | [ |
| [Co(dpda)(4,4′-bpy)]n | 448 | 93.3 | 1 mol L‒1 KOH | [ |
| AB&Ni-MOF(1:1)/GC | 379 | 77 | 1 mol L‒1 KOH | [ |
| NNU-22 | 376 | 77.2 | 0.1 mol L‒1 KOH | [ |
| NNU-23 | 365 | 81.8 | 0.1 mol L‒1 KOH | [ |
| NiFe-NFF | 227 | 38.9 | 1 mol L‒1 KOH | [ |
| Fe2Ni MOF/NF | 222 | 42.4 | 1.0 mol L‒1 KOH | [ |
| hov-IrOx/CeO2 | 251 | 55 | 0.1 mol L‒1 HClO4 | [ |
| FeNiBTC/SSM5 | 223.7 | 74.5 | 1 mol L‒1 KOH | [ |
| NiCoFeOx@C-400 | 253 | 83.3 | 1 mol L‒1 KOH | [ |
Fig. 8. The ORR pathways with AM (a) and DM (b) in acid and alkaline media. Reproduced with permission [199]. Copyright 2024, Royal Society of Chemistry. (c) The synthesis of Co4-M-MOFs (M = Cu, Co, and Zn). Reproduced with permission [40]. Copyright 2024, Wiley‐VCH. Volcano plots of the hydrogen adsorption free energy of HER with the PDOS at the Fermi level (d) and the calculated overpotentials of OER with the d-band positions (e). Reproduced with permission [147]. Copyright 2021, Royal Society of Chemistry.
Fig. 9. (a) Reaction pathways of the CO2RR. Reproduced with permission [213]. Copyright 2024, Elsevier Ltd. (b) The synthesis and structure of Cu-X. (c) Average FEs of HER and total CO2RR. (d) Average FEs of various reduction products over Cu-I. (e) PDOS of Cu atoms in Cu-Cl, Cu-Br, and Cu-I. (f) Intermediates among process of CO2 electroreduction on Cu-I. Reproduced with permission [230]. Copyright 2022, Wiley‐VCH. (g) The cage structure in the Cu1Ni-BDP MOF. XANES (h) and EXAFS (i) spectra. (j) Time-resolved in-situ XRD patterns. (k) In-situ ATR-SEIRAS spectra. Reproduced with permission [232]. Copyright 2023, American Chemical Society. XPS spectra of In 3d (l) and Mg 2p (m). (n) EPR spectrum. Reproduced with permission [233]. Copyright 2024, American Chemical Society. (o) FE at different operation voltages. (p) The distribution of unpaired electrons in InCo-ABDBC-HIN. Reproduced with permission [234]. Copyright 2023, Royal Society of Chemistry.
| Catalyst | Electrolyte | Product | Current density (mA cm‒2) | FE (%) | Ref. |
|---|---|---|---|---|---|
| SNNU-42 | 0.5 mol L‒1 H2SO4 | HCOOH CO | 77.2 | 91.3 | [ |
| Cu1Ni-BDP | 1.0 mol L‒1 KOH | C2H4 | 278 | 52.7 | [ |
| InCo-ABDBC-HIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 26 | 81.6 | [ |
| In-ABDBC-HIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 25 | 79.97 | [ |
| In-ABDBC-HAIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 19 | 71.94 | [ |
| C-Zn1Ni4 ZIF-8 | 0.5 mol L‒1 KHCO3 | CO | 71.5 | 98 | [ |
| (Me2NH2+)[InIII-[Ni(C2S2(C6H4COO)2)2]]·3DMF·1.5H2O | 0.05 mol L‒1 KHCO3 | HCOOH CO | 36 | 91.47 | [ |
| MIL-68(In)-NH2 | 0.1 mol L‒1 KHCO3 | HCOOH | 108 | 94.40 | [ |
| Cu-MOF-74 | 0.1 mol L‒1 KHCO3 | CH4 | 10.9 | >50 | [ |
| Cu-I | 1 mol L‒1 KOH | CH4 | 77.7 | 57.2 | [ |
| Cu dimer - HKUST-1 | 1 mol L‒1 KOH | C2H4 | 262 | 45 | [ |
| 3D-CTU-MCOF | 0.5 mol L‒1 EMIMBF4 | C2 | >20 | 26.4 | [ |
Table 6 Performance comparison of multinuclear MOFs for CO2RR.
| Catalyst | Electrolyte | Product | Current density (mA cm‒2) | FE (%) | Ref. |
|---|---|---|---|---|---|
| SNNU-42 | 0.5 mol L‒1 H2SO4 | HCOOH CO | 77.2 | 91.3 | [ |
| Cu1Ni-BDP | 1.0 mol L‒1 KOH | C2H4 | 278 | 52.7 | [ |
| InCo-ABDBC-HIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 26 | 81.6 | [ |
| In-ABDBC-HIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 25 | 79.97 | [ |
| In-ABDBC-HAIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 19 | 71.94 | [ |
| C-Zn1Ni4 ZIF-8 | 0.5 mol L‒1 KHCO3 | CO | 71.5 | 98 | [ |
| (Me2NH2+)[InIII-[Ni(C2S2(C6H4COO)2)2]]·3DMF·1.5H2O | 0.05 mol L‒1 KHCO3 | HCOOH CO | 36 | 91.47 | [ |
| MIL-68(In)-NH2 | 0.1 mol L‒1 KHCO3 | HCOOH | 108 | 94.40 | [ |
| Cu-MOF-74 | 0.1 mol L‒1 KHCO3 | CH4 | 10.9 | >50 | [ |
| Cu-I | 1 mol L‒1 KOH | CH4 | 77.7 | 57.2 | [ |
| Cu dimer - HKUST-1 | 1 mol L‒1 KOH | C2H4 | 262 | 45 | [ |
| 3D-CTU-MCOF | 0.5 mol L‒1 EMIMBF4 | C2 | >20 | 26.4 | [ |
Fig. 10. Schematic diagram of ENRR on the surface: dissociation mechanism (a), association distal mechanism (b), association alternating mechanism (c), and enzymatic mechanism (d). Reproduced with permission [243]. Copyright 2024, Elsevier Ltd. (e) Combined volcano diagrams for flat (black) and stepped (red) TM surfaces in N2 reduction via Heyrovsky reaction, without (solid) and with (dotted) H-bonds. Reproduced with permission [247]. Copyright 2012, Royal Society of Chemistry. (f) FEs and NH3 yields on the MIL-100 (Al). (g) NRR mechanism on the MIL-100 (Al). Reproduced with permission [42]. Copyright 2020, American Chemical Society.
| Catalyst | Electrolyte | Product | Yield | FE (%) | Ref. |
|---|---|---|---|---|---|
| MIL-100 (Al) | 0.1 mol L‒1 KOH | NH3 | 10.6 μg h-1 cm-2 mgcat.-1 | 22.6 | [ |
| NH2-MIL-88B-Fe | 0.1 mol L‒1 Na2SO4 | NH3 | 1.205 × 10-10 mol s−1 cm−2 | 5.66 | [ |
| MIL-88B-Fe | 0.1 mol L‒1 Na2SO4 | NH3 | 3.575 × 10-11 mol s−1 cm−2 | 5.59 | [ |
| MoP @PPC | 0.1 mol L‒1 HCl | NH3 | 28.73 μg h-1 cm-2 mgcat.-1 | 2.48 | [ |
| Cu@Ce-MOF | 0.1 mol L‒1 KOH | NH3 | 14.83 μg h-1 cm-2 | 10.81 | [ |
| Fe-TCPP | 0.1 mol L‒1 HCl | NH3 | 44.77 μg h-1 cm-2 mgcat.-1 | 16.23 | [ |
| Co-TCPP | 0.1 mol L‒1 HCl | NH3 | 28.3 μg h-1 cm-2 mgcat.-1 | 11.58 | [ |
| SO3-MOF-808 | 0.5 mol L‒1 Na2SO4 | NH3 | 97 μmol cm-2 h | 87.5 | [ |
| NiFeRu-MIL-53 | 1 mol L‒1 KOH | NH3 | 62.39 mg h-1 cm-2 | 100 | [ |
Table 7 Performance comparison of multinuclear MOFs for NRR and NO3RR.
| Catalyst | Electrolyte | Product | Yield | FE (%) | Ref. |
|---|---|---|---|---|---|
| MIL-100 (Al) | 0.1 mol L‒1 KOH | NH3 | 10.6 μg h-1 cm-2 mgcat.-1 | 22.6 | [ |
| NH2-MIL-88B-Fe | 0.1 mol L‒1 Na2SO4 | NH3 | 1.205 × 10-10 mol s−1 cm−2 | 5.66 | [ |
| MIL-88B-Fe | 0.1 mol L‒1 Na2SO4 | NH3 | 3.575 × 10-11 mol s−1 cm−2 | 5.59 | [ |
| MoP @PPC | 0.1 mol L‒1 HCl | NH3 | 28.73 μg h-1 cm-2 mgcat.-1 | 2.48 | [ |
| Cu@Ce-MOF | 0.1 mol L‒1 KOH | NH3 | 14.83 μg h-1 cm-2 | 10.81 | [ |
| Fe-TCPP | 0.1 mol L‒1 HCl | NH3 | 44.77 μg h-1 cm-2 mgcat.-1 | 16.23 | [ |
| Co-TCPP | 0.1 mol L‒1 HCl | NH3 | 28.3 μg h-1 cm-2 mgcat.-1 | 11.58 | [ |
| SO3-MOF-808 | 0.5 mol L‒1 Na2SO4 | NH3 | 97 μmol cm-2 h | 87.5 | [ |
| NiFeRu-MIL-53 | 1 mol L‒1 KOH | NH3 | 62.39 mg h-1 cm-2 | 100 | [ |
Fig. 11. (a) The synthetic process of NiFeRu-MIL-53. Potential-dependent NH3 yield rate (b) and FENH3 (c) of NiFe-MIL-53 and NiFeRu-MIL-53. In-situ Raman spectra of NiFe-MIL-53 (d) and NiFeRu-MIL-53 (e). Reproduced with permission [250]. Copyright 2024, American Chemical Society. (f) The structure of SO3-MOF-808. (g) FE to ammonia, FE to nitrite, and selectivity toward ammonia. (h) Ammonia production rates. Reproduced with permission [251]. Copyright 2024, American Chemical Society.
Fig. 13. The ground state structure of Cr4, S = 3 spin state (a) and S = 13 spin state (b). Reproduced with permission [264]. Copyright 2016, American Chemical Society. (c) The electronic coupling between Fe and Ni in Fe2Ni-MIL-88B. Reproduced with permission [265]. Copyright 2021, Elsevier Ltd. Mechanism diagram of electron orbital coupling induced by interfacial BEF: free energy difference (d) and energy band diagram (e). Reproduced with permission [267]. Copyright 2024, Elsevier Ltd.
Fig. 14. (a) Structure diagrams of Fe2(DOBDC) and Fe2Cl2(BBTA). PDOS before (b) and after (c) Mo doping. (d) PDOS of Mo-*N1-N2 in *NN. (e) The charge transfer chain. Reproduced with permission [271]. Copyright 2022, American Chemical Society.
Fig. 16. (a,b) FEs and corresponding NH3 yields. (c) Free energy diagram of electrocatalytic NO3RR pathway. Reproduced with permission [275]. Copyright 2024, American Chemical Society. (d) Visual representation of a V-shaped trinuclear cluster. (e) PDOS of the d orbitals of the catalytic active center. Reproduced with permission [147]. Copyright 2021, Royal Society of Chemistry. (f) The synthesis of Ni0.8Fe0.2-MOF-B. Reproduced with permission [278]. Copyright 2022, Wiley‐VCH. (g) 3D framework of Fe2M-MOF. Reproduced with permission [15]. Copyright 2023, Wiley‐VCH. (h) Coordination environment. Reproduced with permission [282]. Copyright 2024, American Chemical Society.
|
| [1] | Jiaqi Xiang, Limiao Chen, Shanyong Chen, You-Nian Liu. Alkali cation effects in electrochemical carbon dioxide reduction [J]. Chinese Journal of Catalysis, 2026, 80(1): 38-58. |
| [2] | Wenbo Shi, Kai Zhu, Xiaogang Fu, Chenhong Liu, Yang Yuan, Jialiang Pan, Qing Zhang, Zhengyu Ba. Dual-site confinement strategy tuning Fe-N-C electronic structure to enhance oxygen reduction performance in PEM fuel cells [J]. Chinese Journal of Catalysis, 2026, 80(1): 293-303. |
| [3] | Yana Men, Yuzhou Jiao, Yanxing Zheng, Xiaoyan Wang, Shengli Chen, Peng Li. pH-dependent protic ionic liquid tuning effect on oxygen reduction activity of a molecular iron catalyst and its electrochemical interfacial origin [J]. Chinese Journal of Catalysis, 2026, 80(1): 258-269. |
| [4] | Yu Chengwen, Liang Lecheng, Mu Zhangyan, Yin Shaoqi, Liu Yuwen, Chen Shengli. FeNC shell-stabilized L10-PtFe intermetallic nanoparticles for high-performance oxygen reduction [J]. Chinese Journal of Catalysis, 2025, 75(8): 125-136. |
| [5] | Xu Xinmeng, Xi Zuoshuai, Gao Hongyi, Zhao Danfeng, Liu Zhiyuan, Ban Tao, Wang Jingjing, Zhao Shunzheng, Wang Ge. Microenvironment modulation around frustrated Lewis pairs in Ce-based metal-organic frameworks for efficient catalytic hydrogenation [J]. Chinese Journal of Catalysis, 2025, 75(8): 59-72. |
| [6] | Chenhao Li, Hao Wang, Weiwei Wang, Shuo Bai, Zhongbin Gong, Qinqin Sang, Yuqing Zhang, Feng Huo, Yanrong Liu. PtCu nano-dendrites with enhanced stability in proton exchange membrane fuel cells [J]. Chinese Journal of Catalysis, 2025, 73(6): 322-333. |
| [7] | Lifang Liu, Yejun Xiao, Xiangyang Guo, Shengye Jin, Fuxiang Zhang. Facets-controllable synthesis of metal-organic frameworks via one supersaturation strategy to insight intrinsic facets effect [J]. Chinese Journal of Catalysis, 2025, 73(6): 153-158. |
| [8] | Yao Yao, Juping Xu, Minhua Shao. Competitions between hydrogen evolution reaction and oxygen reduction reaction on an Au surface [J]. Chinese Journal of Catalysis, 2025, 73(6): 271-278. |
| [9] | Siming Li, Enyang Sun, Pengfei Wei, Wei Zhao, Suizhu Pei, Ying Chen, Jie Yang, Huili Chen, Xi Yin, Min Wang, Yawei Li. Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells [J]. Chinese Journal of Catalysis, 2025, 72(5): 277-288. |
| [10] | Mingjia Lu, Jinhui Liang, Binwen Zeng, Wei Li, Yunqi Li, Qinqxin Wang, Yuhuai Li, Hong Chen, Jianzheng Li, Yangyang Chen, Lecheng Liang, Li Du, Yan Xiang, Shijun Liao, Zhiming Cui. Mesoporous bowl-like carbon support for boosting oxygen transport of fuel cell cathode [J]. Chinese Journal of Catalysis, 2025, 72(5): 254-265. |
| [11] | Rushuo Li, Tao Ban, Danfeng Zhao, Fajie Hu, Jing Lin, Xiubing Huang, Zhiping Tao, Ge Wang. Defective UiO-66(Ce) supported Ni nanoparticles with optimized microenvironment and electronic state for efficient olefin hydrogenation reaction [J]. Chinese Journal of Catalysis, 2025, 72(5): 344-358. |
| [12] | Tingting Hu, Panpan Feng, Hongqi Chu, Teng Gao, Fusheng Liu, Wei Zhou. Revealing the regulatory mechanism of built-in electric field in defective mesoporous MIL-125(Ti)@BiOCl S-scheme heterojunctions toward optimized photocatalytic performance [J]. Chinese Journal of Catalysis, 2025, 69(2): 123-134. |
| [13] | Haotian Guo, Lulu Zhao, Xinyu Liu, Jing Li, Pengfei Wang, Zonglin Liu, Linlin Wang, Jie Shu, Tingfeng Yi. Electrospinning technology combined with MOFs: Bridging the development of high-performance zinc-air batteries [J]. Chinese Journal of Catalysis, 2025, 79(12): 32-67. |
| [14] | Baofa Liu, Weijie Pan, Zhiyang Huang, Yi Zhao, Zuyang Luo, Tayirjan Taylor Isimjan, Bao Wang, Xiulin Yang. Unlocking 5300-h ultrastable metal-free ORR catalysts for Zn-air batteries via F-N co-doped tailored carbon pore architectures and synergistic adsorption modulation [J]. Chinese Journal of Catalysis, 2025, 79(12): 100-111. |
| [15] | Ke-Xin Li, Hao Yuan, Ralph T. Yang, Zhun Hu. MOF encapsulation derived slow-release oxygen species to enhance the activity and selectivity of methane selective oxidation: A transient DRIFTs Study [J]. Chinese Journal of Catalysis, 2025, 78(11): 202-214. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||